
BioCatNet
a platform for the systematic analysis of enzyme

sequence - structure - function
relationships

A diploma thesis presented to the faculty in
partial fulfillment of the requirements

for the degree Diplom-Biologist (t.o.) in

Technische Biologie (Dipl.)

by
Waldemar Reusch

Examiners: Prof. Dr. Jürgen Pleiss
Prof. Dr. Bernhard Hauer

Supervisor: Dipl. Biol. (t.o.) Constantin Vogel

Institute of Technical Biochemistry
Prof. Dr. Bernhard Hauer

December 10, 2014

Abstract
Throughout the last decades, catalytically active proteins have greatly
gained importance in the synthetic chemistry industry. Compared to tradi-
tional metallo- and organocatalysis, enzymes provide several key benefits:
chemo- and stereoselectivity, low reaction temperatures and an immensely
reduced need for toxic chemicals make biocatalysts an increasingly attrac-
tive alternative, both in the laboratory and on industrial scale. Key ad-
vances in protein sequencing, manipulation and expression are at the base
of protein engineering, the tremendous process of tailoring proteins to fit
them into new biosynthetic pathways ranging from the production of com-
modity chemicals to advanced pharmaceutical intermediates.

The increasing amount of research of course produces an increased amount
of data, which in turn requires the involvement of bioinformatics to collect,
store, process and redistribute the acquired information. A large number of
tools are available online for this purpose, one type of tool being databases.
In the last decade the Institute of Technical Biochemistry (ITB) has released
several databases containing sequence and structure information, aiding in
the improvement of established biocatalysts as well as the engineering of
novel ones. These family-specific protein databases (FSPDs) were backed
by the Data Warehouse system for protein Families (DWARF) system, de-
veloped by Markus Fischer at the ITB. To keep track with the steadily
growing sequence space, expand the functionality and to update the user
interface to current standards, the system recently has been replaced by a
performance-optimized platform called BioCatNet.

The present thesis describes the authors contribution to the platform, promi-
nently the creation of user and application interfaces to interact with the
underlying databases and tools. The new platform has been build modular
to allow easier extension and is already surpassing the previously used sys-
tem in terms of functionality and usability. While sequence and structure
information will be collected and processed automatically by tools, manual
curation by experts is needed to ensure a high quality repository. Func-
tional information will be inserted by bench scientists directly, using the
user interface, avoiding the high effort and mediocre quality that comes
with literature mining. A set of clearly structured and interactive forms
guide collaborators through the process, ensuring high quality, consistent
data, complying to, and partially exceeding, current standards.

We expect this new platform to be a solid, extensible and comfortable foun-
dation for future FSPDs to provide scientists a high quality repository for
information about sequence relationships, experimentally determined and
computationally inferred structures, experimentally confirmed functions as
well as critical parameters.

Table of Contents

List of Figures v

List of Listings vi

1 Motivation 1

2 Introduction 3
2.1 Bioinformatics . 3

2.1.1 Sequence alignment . 3
2.1.2 Data formats . 4

2.2 Databases . 5
2.2.1 NCBI . 6
2.2.2 BRENDA . 6
2.2.3 PDB . 6

2.3 Database systems at the ITB - BioCatNet background 7
2.3.1 DWARF . 7
2.3.2 BioCatNet . 7

2.4 Web-Application development . 8
2.4.1 Version control cystems . 8
2.4.2 Code exchange and packages . 9
2.4.3 Scripting, styling, and markup languages 9
2.4.4 Object-oriented programming 14
2.4.5 Model-view-controller Architecture 20
2.4.6 API . 21

3 Aims 25
3.1 Data acquisition . 25
3.2 Standardization . 26
3.3 Analyses . 26
3.4 Sharing, collaboration, publishing . 27
3.5 Family-specific protein databases . 27

4 Methods 29
4.1 Machine and operating system . 29
4.2 Software . 29

4.2.1 Database server . 29
4.2.2 HTTP server . 30
4.2.3 Bioinformatics tools . 30

i

Table of Contents

4.3 Workflow . 31
4.3.1 Version control . 31
4.3.2 Back end . 31
4.3.3 Front end . 32

4.4 Third party libraries . 33
4.4.1 Mustache . 33
4.4.2 Ketcher . 33
4.4.3 Back end . 34
4.4.4 Front end . 34

5 Results 37
5.1 BioCatNet data model . 37

5.1.1 Data model related to the protein sequence 38
5.1.2 Data model related to structural information 39
5.1.3 Data model related to biochemical function 40

5.2 BioCatNet back end libraries . 42
5.2.1 ITB\Router . 43
5.2.2 ITB\MVC . 44
5.2.3 ITB\JSON . 46
5.2.4 ITB\Mime . 46
5.2.5 ITB\Traits . 46
5.2.6 ITB\Workers . 47

5.3 BioCatNet front end libraries . 47
5.4 BioCatNet application back end . 48

5.4.1 Models . 48
5.4.2 Views . 48
5.4.3 Controllers . 49
5.4.4 Worker . 50

5.5 BioCatNet API . 50
5.5.1 Long running tasks . 51

5.6 BioCatNet website . 52
5.6.1 Wiki . 52
5.6.2 Issues and feature requests . 52
5.6.3 Family-specific protein databases 56
5.6.4 Search view . 56
5.6.5 Sequence browser . 56
5.6.6 Alignment viewer - Jalview . 58
5.6.7 Structure browser . 59
5.6.8 Functions browser . 69
5.6.9 Taxonomy browser . 70
5.6.10 Workbench . 70

5.7 Use cases . 89
5.7.1 Analysis of thiamine diphosphate-dependent enzymes 89
5.7.2 Analysis of imine reductases . 89

6 Discussion 91

ii

Table of Contents

7 Outlook 95

Acknowledgements 97

References 99

iii

List of Figures

2.1 A typical collaboration of MVC components. 21
2.2 Modified web-application MVC-pattern 22
2.3 Control flow graph of an HTTP Request in the classical and routed

mvc-pattern . 23

5.1 Legend and examples describing data model relationships 38
5.2 Objects and relations of the BioCatNet data model related to organisms

and cross-database references . 39
5.3 Objects and relations of the BioCatNet data model related to protein

sequence . 40
5.4 Objects and relation of the BioCatNet data model related to three-

dimensional structure and homology models 41
5.5 Objects and relations of the BioCatNet data model related to the exper-

iment set-up . 42
5.6 BioCatNet welcome page . 53
5.7 BioCatNet wiki . 54
5.8 BioCatNet bugtracker . 55
5.9 BioCatNet FSPD-specific welcome page 57
5.10 BLAST search form . 58
5.11 Quickjump form . 59
5.12 Advanced search form . 60
5.13 Organism search form . 60
5.14 Sequence-organism-combination search form 60
5.15 Protein family overview page . 61
5.16 Superfamily details page . 62
5.17 Homologous family groups details page 63
5.18 Protein details page . 64
5.19 Sequence details page . 65
5.20 Jalview lite multiple sequence alignment visualization 66
5.21 Jalview like multiple sequence alignment phylogenetic tree visualization 66
5.22 Structure browser . 67
5.23 Homology model viewer . 68
5.24 Functions browser . 69
5.25 Reaction details view . 69
5.26 Compound details view . 70
5.27 Taxonomy detail view . 71
5.28 BioCatNet Workbench . 72
5.29 Workbench - BLAST tool . 73

v

5.30 Workbench - BLAST status page while waiting for results 74
5.31 Workbench - BLAST status page with results 74
5.32 Workbench - standard numbering tool 75
5.33 Workbench - standard numbering result page 76
5.34 Workbench - experiments overview page 77
5.35 Workbench - experiment set creation form 78
5.36 Workbench - first step of the sequence creation form 78
5.37 Workbench - second step of the sequence creation form 79
5.38 Workbench - first step in the experiment creation form 80
5.39 Workbench - second step in the experiment creation form 81
5.40 Workbench - third step in the experiment creation form 82
5.41 Workbench - fourth step in the experiment creation form 83
5.42 Workbench - fifth step in the experiment creation form 84
5.43 Workbench - sixth step in the experiment creation form 85
5.44 Workbench - last step in the experiment creation form 86
5.45 Workbench - hovering reaction creation form 87
5.46 Workbench - hovering buffer creation form 87
5.47 Workbench - hovering compound creation form 88

List of Listings

2.1 Example of an amino acid sequence in FASTA notation 4
2.2 Excerpt of an PDB file describing the structure of a synthetic collagen-

like peptide . 5
2.3 Minimal example of an HTML document 10
2.4 Minimal example of an CSS style declaration 10
2.5 Minimal example of an JavaScript function 11
2.6 Example of PHP code embedded in HTML 12
2.7 Example of an Mustache template (greetings.html) and how it is ren-

dered (index.php). 12
2.8 Minimal example of an SQL expression 13
2.9 Example of an Markdown Document 14
2.10 Example of dependency injection in PHP. 15
2.11 Class inheritance in PHP . 16
2.12 Example of overloading in PHP. 19
2.13 Object Oriented JavaScript . 19
2.14 Example of an XML document . 23
2.15 Example of an JSON document . 24

4.1 Method chaining in PHP. 32

vi

4.2 Event driven programming in Javascript 33

5.1 Simplified example of object-relation-mapping provided by the ITB\MVC
library . 45

5.2 Example of an PHP class using ITB\Traits\CreateTrait. 47

Glossary

AJAX (asynchronous JavaScript and XML) is a set of techniques used in web applica-
tions to fetch and present additional data without reloading or leaving the current
page . 33

BLAST (Basic Local Alignment Search Tool) is an algorithm for comparing primary
biological sequence information such as amino-acid and DNA sequences 4

CSS (Cascading Style Sheets) is a styling language used to describe the look and
formatting of documents written in markup languages such as HTML 10

data mining is the computational process of discovering and extracting information
from a data set and to transform it into an understandable structure for further
use . 25

DBMS (Database Management System) is a software designed to provide an interface
for databases to interact with users and other programs. Moreover, it is critical
in maintaining the integrity and consistency of the database. 5

EC (Enzyme Commission) number is a numerical classification scheme for enzymes,
based on the chemical reactions they catalyze . 39

Entrez PubMed is a database of references and abstracts on life sciences and biomed-
ical topics hosted by the NCBI. 6

FASTA is a DNA and protein sequence alignment software as well its now ubiquitous
plaintext file format for representing nucleotide and amino acid sequences 4

Firebird is a relational DBMS, and the DBMS of choice at the ITB 29

GenBank is a DNA sequence database provided by the NCBI in collaboration with
the EMBL and DDBJ . 6

vii

git is the most popular and best supported distributed Version Control System today,
supporting millions of software projects worldwide, including Linux and Android
development . 9

GNU Emacs is an extensible, customizable text and source code editor. 31

JavaScript is an dynamic general-purpose programming language, prevalently used in
web-browsers . 10

JSON (JavaScript Object Notation) is a human readable data exchange format, akin
to XML . 22

Ketcher is a free and open-source tool for drawing chemical molecules, easily embed-
dable into web sites . 34

Mustache is a logic-less templating engine used - not only - for HTML. 12

ODBC (Open Database Connectivity) is a standard database access method, aiming
to unify how applications and DBMS interact . 6

ORM (Object Relation Mapping) is a programming technique for converting data
between incompatible type systems in programming languages and databases
. 44

Perl is a family of high-level, general-purpose, interpreted, dynamic programming lan-
guages with powerful text-processing capabilities . 9

PHP is a server-side scripting language designed for web development, and currently
the most widely used . 9

python is a widely used dynamic general-purpose, high-level programming language
with an focus on readability . 34

SMILES - short for simplified molecular-input line-entry system - is a specification in
form of a line notation for describing the structure of chemical molecules using
short ASCII strings . 34

SQL (Structured Query Language) is a special purpose programming language, de-
signed for managing data held in a RDMBS. 6

SSH is a network protocol for secure data communication, remote command-line login
and remote command execution. 31

Standard Numbering Scheme for families of homologous proteins allow for the un-
ambiguous identification of functionally and structurally relevant residues . . . 51

STRENDA (Standards for Reporting Enzymology Data) is an initiative aiming to
establish standard forms of data presentations for enzyme research and thereby
to improve the quality of data reporting in the scientific literature. 92

viii

Acronyms

Acronyms

API application programming interface. 21

BRENDA Braunschweig Enzyme Database . 6

CGI Common Gateway Interface . 11

CRUD create, read, update, delete . 13

DWARF Data Warehouse system for protein Families . I

FSPD family-specific protein database. I

GUI graphical user interface . 21

HMM hidden Markov Model. 30

HTML HyperText Markup Language . 9

HTTP Hypertext Transfer Protocol . 9

IRED Imine Reductase Engineering Database . 37

ITB Institute of Technical Biochemistry . I

KEGG Kyoto Encyclopedia of Genes and Genomes . 58

MSA multiple sequence alignment . 4

MVC model-view-controller . 21

NCBI National Center for Biotechnology Information . 6

NMR nuclear magnetic resonance . 6

OOP object-oriented programming . 14

PDB Protein Data Bank . 5

ix

Acronyms

SVG Scalable Vector Graphics . 34

TEED Thiamine diphosphate-dependent Enzyme Engineering Database 8

ThDP thiamine diphosphate . 89

URL uniform resource locator . 46

VCS version control system . 9

XML Extensible Markup Language . 9

x

1 Motivation

The development of novel biocatalysts and their application in large-scale processes is
impeded on various levels nowadays. Bench scientists struggle with experiments failing
to reproduce findings another group has discovered. Process Engineers struggle with
set-up and scale-up of mass-production processes which have been shown to work flaw-
lessly at the bench. One big problem underlying these issues is the lack of data. To be
precise, the lack of high-quality and high-quantity data on the behavior of biocatalysts
under certain conditions.

While the amount of effort and investment needed to investigate a protein sequence
has dropped rapidly over the last years, the costs for the experimental characterization
of protein function has stayed rather constant, leading to a widening gap between
the numbers of known protein sequences and known protein functions. Additionally,
publications on experimental characterization are often supported only by a few figures
and tables to get their point across. Even if supplementary material is provided, only
figures and tables directly contributing to the results are being attached. The larger
part of collected raw data, whether in lab books or on hard disks, ends up in archives,
never to be touched again.

This lack of uniform high-quality data also impedes comparability severely. Because
individual research groups focus on different aspects of their research subject, similar
experimental setups and findings might result in very different publications, making
the comparison cumbersome. Even though a vast amount of research has already been
conducted around the enzymatic activity of proteins, it is a Sisyphean task to find
publications relevant to someone’s special field of interest and extract data. Moreover,
due to the often missing link between the processed data and the amino acid sequence
of the applied biocatalysts, reproduction of experiments is hindered.

It is hard for scientists and engineers to formulate hypotheses based on scarce and
divergent data. Much effort needs to be invested only to (re-)produce data, which
may be lying buried in another labs archive. While providing extensive supplementary
material with the publication – or better still, providing raw data online – may increase
the amount of available data, the issue of comparability remains.

BioCatNet aims to alleviate this issue. By capturing and validating user-provided data
it will hold uniform, comprehensive and high-quality data describing protein sources
and relationships, kinetic and environmental parameters as well as substrate and prod-
uct specificities. BioCatNet aims to be a platform for collecting, standardizing, an-
alyzing and sharing biochemical information about catalytic proteins. It will include

1

1 Motivation

information about catalytic activities, substrate specificities, product yields and dis-
tributions, environmental conditions and kinetics as well as information about protein
structure and features and similarities of their amino acid sequences.

As manual entry of large amounts of primary data promises to be a cumbersome task,
the key focus of the development will be the user. By providing an intuitive and easy
to use interface, the time and effort needed to submit biochemical data to BioCatNet
should be reduced to a minimum. Clearly structured and pleasant to look at, the user
interface will facilitate repetitive tasks and provide a simple and short workflow to enter
experimental data. To further motivate bench scientist to provide data, BioCatNet
will present a means to store research data - publicly or confidential - and return it as
well-formatted, standardized lab-reports.

2

2 Introduction

Biocatalysis is the application of enzymes and microbes in synthetic chemistry. Even
though fermentation processes have been commonplace for millennia, the first accounts
of selective applications of cell extracts on non-natural man-made organic compounds
are only a century old. [11] Since then, enzymes have been gaining attention in syn-
thetic chemistry because of their chemo-, regio- and enantioselectivity. The first chal-
lenge when working with biocatalysts is limited protein stability, nowadays primarily
overcome by immobilization. [24] Since 1980, protein engineering techniques have been
used to make biocatalysts work outside their original substrate range, often even on
non-natural substrates. [11] To use protein engineering techniques more effectively,
researchers in this field often use bioinformatics tools.

2.1 Bioinformatics

Bioinformatics is an interdisciplinary field that blends computer sciences and statistics
with biomedical sciences. It emerged shortly after high-throughput DNA sequencing
methods in the 1970s and gained importance ever since. One main task of this new
field is the management, analysis and interpretation of biological experiments. Amongst
other tools, scientists in this field make use of databases and apply statistical methods.
[44]

2.1.1 Sequence alignment

To identify similarities between DNA, RNA, or amino acid sequences, bioinformaticians
use sequence alignments. The aligned sequences are typically presented as rows within
a matrix, with highlights on equal or similar sections. These alignments can then be
used to infer functional, structural or evolutionary relationships.

For pairwise alignment - i.e. alignment of two sequences - one can choose between
global alignments which attempt to align every residue and local alignments which
focus to achieve high similarities in smaller fragments. Global alignments are best
suited for sequences of similar length and dissimilar sequences tend to have better
alignments with local alignment methods. Though pairwise alignments can only be
applied between two sequences, they are efficient to calculate and find their use when
searching for a sequence in a large sequence database, for example.

3

2 Introduction

Multiple sequence alignment (MSA) are an extension of pairwise alignments
and operates on more than two sequences at a time. MSA methods are often used
to identify conserved regions of amino acids or nucleotides across a group of related
sequences. Such motifs can be used to infer the position of active sites, or equally
outstanding regions, in proteins. [45]

FASTA is a sequence alignment software package first designed for protein sequence
similarity searches, but now supporting protein:protein, DNA:DNA and translated
DNA:protein searches as well. Applying heuristic methods, it achieves considerable
speed improvements compared to its stricter predecessors. [41]

BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) is an algorithm
for comparing amino acid and nucleotide sequences. It enables the user to search for
sequences similar to the input sequence in a large library of sequences. Today, it is
the most widely used tool for sequence searching and outperforms the older FASTA
sequence search tools. This performance gain stems from the use of looser heuristic
algorithms and comes at the cost of accuracy, so that it cannot "guarantee the optimal
alignments of the query and database sequences". [1]

Standard numbering schemes for families of homologous proteins allow for the
unambiguous identification of functionally and structurally relevant residues, to com-
municate results on mutations, and to systematically analyze sequence-function re-
lationships in protein families. For this, a reference profile is created from a set of
representative protein sequences. The subsequent pairwise alignment with a query
sequence will yield standard amino acid positions for the query where key positions
receive the same position number for every sufficiently closely related query. [70, 29]

2.1.2 Data formats

FASTA is a plaintext file format for representing nucleotide and amino acid se-
quences. The format originates from the FASTA sequence alignment software package
but has since become a standard used widely across various bioinformatics software.
One file can contain multiple distinct sequences, separated by sequence descriptions
and comments, which are denoted by a line starting with the greater-than (>) symbol.
Descriptions usually also contain a cross reference to an entry in a larger sequence
database. An example is presented in Listing 2.1.

Listing 2.1: Example of an amino acid sequence in FASTA notation

>gi |31563518| ref| NP_852610 .1| microtubule - associated proteins 1A/1B
MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHVNMSELV
KIIRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQETFGF

4

2.2 Databases

The PDB file format is representing the three dimensional structure of macro-
molecules in plaintext. Originally conceived at the Protein Data Bank (PDB), this
file format is also used by various bioinformatics tools including homologous mod-
elling and docking software. Though it has been developed to capture the structure of
macromolecules such as proteins and DNA/RNA, it is also capable of storing structure
information for small molecules. Indeed, protein structures saved in the PDB format
are often interspersed with small molecules like water, ions and ligands. A PDB file
consists of various sections of space-separated property and value tables, where the
first column identifies the section type. An excerpt of an PDB file is presented in
Listing 2.2.

Listing 2.2: Excerpt of an PDB file describing the structure of a synthetic collagen-like
peptide, available under the accession code 1A3I. [39]

HEADER EXTRACELLULAR MATRIX 22-JAN -98 1A3I
TITLE X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN -LIKE
TITLE 2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO -PRO -GLY)
...
EXPDTA X-RAY DIFFRACTION
AUTHOR R.Z.KRAMER ,L.VITAGLIANO ,J.BELLA ,R.BERISIO ,L.MAZZARELLA ,
AUTHOR 2 B.BRODSKY ,A.ZAGARI ,H.M. BERMAN
...
REMARK 350 BIOMOLECULE : 1
REMARK 350 APPLY THE FOLLOWING TO CHAINS : A, B, C
REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000
REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000
...
SEQRES 1 A 9 PRO PRO GLY PRO PRO GLY PRO PRO GLY
SEQRES 1 B 6 PRO PRO GLY PRO PRO GLY
SEQRES 1 C 6 PRO PRO GLY PRO PRO GLY
...
ATOM 1 N PRO A 1 8.316 21.206 21.530 1.00 17.44 N
ATOM 2 CA PRO A 1 7.608 20.729 20.336 1.00 17.44 C
ATOM 3 C PRO A 1 8.487 20.707 19.092 1.00 17.44 C
ATOM 4 O PRO A 1 9.466 21.457 19.005 1.00 17.44 O
ATOM 5 CB PRO A 1 6.460 21.723 20.211 1.00 22.26 C
...
HETATM 130 C ACY 401 3.682 22.541 11.236 1.00 21.19 C
HETATM 131 O ACY 401 2.807 23.097 10.553 1.00 21.19 O
HETATM 132 OXT ACY 401 4.306 23.101 12.291 1.00 21.19 O

2.2 Databases

A database is a collection of information that is organized so that it can easily be
accessed, managed and updated. In computing, databases are classified according to
their organizational approach. The most prevalent approach is the relational database
though object and graph databases have gained attention in recent years. [20, 58]

A Database Management System (DBMS) is software specially designed to interact
with users, other applications and the database itself to capture and analyze data.

5

2 Introduction

The database standards Open Database Connectivity (ODBC) and Structured Query
Language (SQL) provide the means for the communication.

Today, complete and up-to-date databases are vital for biotechnical research. They
range from diverse sequence repositories with little manual intervention to expertly
curated specialized databases, and the amount of information they encompass has been
growing exponentially in the last few decades. [75]

2.2.1 NCBI

The National Center for Biotechnology Information (NCBI) provides a comprehen-
sive website for biologists including databases and tools centered around genomic and
molecular data. As a division of the National Library of Medicine at the National Insti-
tutes of Health, the NCBI is conducting research on fundamental biomedical problems
and developing standards for data deposition and biological nomenclature as well as
developing, distributing and supporting a variety of databases and software for the
scientific and medical communities. NCBIs most used services encompass GenBank,
Entrez PubMed and BLAST . [49, 50]

2.2.2 BRENDA

The Braunschweig Enzyme Database (BRENDA) enzyme information system is the
main collection of enzyme functional and property data, the majority of which has
been extracted manually and by text mining from primary literature. Since 1987, its
database covers structural and functional annotations as well as information about
occurrence, preparation and application of enzymes and engineered variants. [60]

Though BRENDA has collected a more than 11,000 kinetic values for over 63,000
enzymes, [36] systematic analysis and comparison is hindered by the fact that BRENDA
was not designed to provide an explicit connection between a protein (or a mutant
variant) and kinetic data. Proteins are referenced by sometimes ambiguous names,
and a precise amino acid sequence for the mentioned protein is hard to find, even in
referenced primary literature.

2.2.3 PDB

The PDB is one of the largest archives of three-dimensional structural data of biological
macromolecules. [6] Established in 1972, today it harbors more than 10,500 structures
determined by X-ray crystallography, nuclear magnetic resonance (NMR) methods, cry-
oelectron microscopy and theoretical modelling. Every week approximately 50 struc-
tures are being added. The PDB file format, described in subsection 2.2.3 on page 6,
is a widely used representation for macromolecular structures.

6

2.3 Database systems at the ITB - BioCatNet background

2.3 Database systems at the ITB - BioCatNet
background

The basic idea behind BioCatNet is not a new one. For more than 10 years the
bioinformatics group at the ITB has been publishing family-specific protein databases
(FSPDs). Build atop the DWARF, these databases provide information about protein
sequences and kinship.

2.3.1 DWARF

The Data Warehouse system for protein Families (DWARF) integrates data on se-
quence, structure and functional annotation for protein families. Tools for extract-
ing and transforming data from public resources are provided to populate databases,
though a lot of manual expert curation is also applied.

The basis for DWARF is a relational data-model encompassing data entities for protein
sequence, family hierarchies, three-dimensional structure and sequence annotations.
Amino-acid sequences and annotations are extracted from GenBank, structure infor-
mation is extracted from PDB. Family hierarchies are subsequently established with
clustering tools and by manual curation. The data is publicly accessible, ordered by
available structures, source organisms or by family hierarchies. Numerous databases
based on DWARF have been publishd, focusing on lipases, [76, 26, 53] cytochrome P450
oxidases, [63, 28] medium-chain dehydrogenase/reductases, [37] PHA depolymerases,
[38] lactamases, [66] thiamine diphosphate dependent enzymes, [78] laccases, [64] triter-
pene cyclases [55] and metallo-β-lactamases. [77]

2.3.2 BioCatNet

The BioCatNet has been conceptualized by Constantin Vogel out of the need to over-
come some of the shortcomings of DWARF. Though it is capable of storing functional
sequence annotation, e.g. the position of active or cofactor-binding sites, DWARF is
not designed to harbor functional parameters like substrate specificity or conversion
rates. In order to enable systematic analyses of the relationships between sequences,
structures, and functions of biocatalysts, a FSPDs has to encompass information on all
three aspects and link them unambiguosly.

In collaboration with members of the FOR1296, Constantin Vogel revised the under-
lying data model to allow for the inclusion of detailed functional description using raw
experiment data. This would allow the unambiguous linkage of a particular amino acid
sequence to experiments, including experiment setups and results. Unfortunately, the
DWARF could not be easily extended to hold the new data model, which led to the con-
ception of an new software platform for the generation, maintenance and presentation
of future FSPDs, the BioCatNet.

7

2 Introduction

Accompanying the work on the user interface, application back end and data model
described in the present thesis, bioinformaticians at the ITB are working on supporting
modules.

DBParse is an automated pipeline for the initial population of FSPDs. [68] Given a
set of seed sequences, the tool performs a search for similar proteins in publicly available
protein databases and clusters the search results subsequently based on sequence sim-
ilarity. Sequence annotations and structure information are extracted in the process,
too. The resulting database must then be curated manually to establish higher-order
hierarchies and weed out false-positives.

DBUpdate is developed to add proteins to established databases. [21] Every month,
more than 250,000 sequences are being added to the GenBank, [31] making this update
tool absolutely necessary, if the BioCatNet wants to keep up with current develop-
ments.

DBModel is a novel automated homologous modelling pipeline, so far applied exclu-
sively to the Thiamine diphosphate-dependent Enzyme Engineering Database (TEED).
Using the latest homologous modelling tools, information about sequence similarities
and structure information provided by the PDB, several homologous structure mod-
els are build and evaluated for every sequence missing an experimentally determined
structure.

2.4 Web-Application development

Code conventions are important to programmers for a number of reasons: 40%-80% of
the lifetime cost of a piece of software goes to maintenance. [30] Hardly any software
is maintained for its whole life by the original author. Code conventions improve the
readability of the software, allowing engineers to understand new code more quickly
and thoroughly. If you ship your source code as a product, you need to make sure it is
as well packaged and clean as any other product you create.

2.4.1 Version control cystems

Version control is a system that records changes to a file or set of files over time so that
you can recall specific versions later.

Many people’s version-control method of choice is to copy files into another directory,
perhaps a time-stamped directory. This approach is very common because it is so
simple, but it is also incredibly error prone. It is easy to forget which directory you’re
in and accidentally write to the wrong file or copy over files you don’t mean to.

8

2.4 Web-Application development

To deal with this issue, programmers long ago developed local version control system
(VCS) that had a simple database that kept all the changes to files under revision con-
trol. Soon after, Centralized VCS were developed to allow for collaboration. Nowadays,
Distributed VCS gained much in popularity, git in particular. [16]

When publishing software, it is advised to set version numbers according to the se-
mantic versioning convention, meaning that version numbers are in the format of
MAJOR.MINOR.PATCH. PATCH number is increased for bug-fix releases, MINOR number
is increased for releases including new features. Any release breaking backwards-
compatibility must increase the MAJOR number. [54]

2.4.2 Code exchange and packages

When programming, one should always try to write DRY code. DRY stands for “Don’t
repeat yourself” and the principle is that there should only ever be one copy of any
important piece of information. This improves efficiency as well as accuracy, as there is
only one place to change the information and there is no copy which can be forgotten
and get out of date. The way to achieve this is writing modular code: refactor often
used routines into functions, collect functions often used together in modules.

Similarly, one should avoid trying to re-invent the wheel when programming. Most
problems one encounters in everyday life have been tackled and most probably been
solved before. The same is true for programming. For every programming language
there are uncountable modules available on the internet, sometimes even well structured
repositories and tools to ease the download, installation and use of modules. For Perl
this is the Central Perl Archive Network (CPAN), for PHP the repository is called
Packagist and Composer is the accompanying command-line tool. [52, 19, 18]

2.4.3 Scripting, styling, and markup languages

Build with current web-application development methods in mind, BioCatNet is using
a variety of scripting, styling and markup languages.

HTML

Markup languages describe documents and data semantically. In the case of Extensible
Markup Language (XML) and HyperText Markup Language (HTML) this is done
using special language constructs, called tags. HTML is the standard language used
to describe web documents today. [33] A web browser reads HTML content from a
local file or an Hypertext Transfer Protocol (HTTP) server response and interprets it
to construct an visual document. HTML allows images and tables to be embedded
and structures documents semantically into headings, paragraphs, lists and many more
distinct blocks.

9

2 Introduction

Originally, HTML documents were static files read and served by a web server. Nowa-
days, many web documents are constructed dynamically from different static and dy-
namic content fragments on the server. An example of a simple HTML document is
given in Listing 2.3.

Listing 2.3: Minimal example of an HTML document

1 <!DOCTYPE html >
2 <html >
3 <body >
4 <h1 >Hello World </ h1 >
5 <p>Lorem ipsum ... </p>
6 </body >
7 </html >

CSS

Cascading Style Sheets (CSS) is used to describe the look and formatting of documents
written in markup languages. It is primarily designed to enable the separation from
document content and semantics from the document presentation, including elements
such as layouts, colors and fonts. [73] It also allows for conditional formatting depending
on the rendering method, such as screens or print-outs. An example of an simple CSS
document is given in Listing 2.4.

Listing 2.4: Minimal example of an CSS style declaration

1 /* Style declarations consist of an element selector followed by
2 * the style description enclosed in curly braces. The description
3 * is a set of property - value pairs , separated by a semicolon.
4 */
5 h1 { /* select all h1 elements (headings)*/
6 font - weight: bold; /* Make every element ’s text bold */
7 color: blue; /* Color every element ’s text blue */
8 }
9 p { /* select all p elements (paragraphs)*/

10 margin -top: 1em; /* Add a margin above every element */
11 }

JavaScript

JavaScript is an interpreted dynamic programming language. Originally conceived
to enable user interactions in web-browsers, in recent years it is gaining popular-
ity as a general-purpose scripting language capable of driving HTTP servers and
databases. JavaScript supports functional, object-oriented and imperative program-
ming paradigms, though its prototypal approach to object inheritance deviates strongly
from the approach purely object-oriented languages chose. [23] An example of an simple
JavaScript program is given in Listing 2.5.

10

2.4 Web-Application development

In the browser environment, JavaScript is used to manipulate the document, load
additional information, interactive content like games, videos and audio elements, form
validation and many more tasks.

Listing 2.5: Minimal example of an JavaScript function

1 /* define a function , which takes one argument */
2 function sayHelloTo (name) {
3 /* Declare a new variable ’greeter ’ */
4 var greeter;
5 /* Create a new HTML text node with the contents
6 * ’Hello ’ followed by the argument. Assign this
7 * node to the variable ’greeter ’
8 */
9 greeter = document.createTextNode (’Hello ’ + name);

10 /* append the new element to the HTML body element */
11 document.body.appendChild (greeter);
12 }
13
14 sayHelloTo (’World ’);

Perl

Perl is a family of interpreted general-purpose scripting languages including Perl5 and
Perl6. The languages borrow features from other programming languages including
C, shell scripting, AWK and sed, and provide powerful text processing facilities. It
gained widespread popularity as a Common Gateway Interface (CGI) scripting lan-
guage, processing HTTP requests and generating web content. Aditionally, Perl is
used for graphics, administration, network programming and is popular in the bioin-
formatics community. [3, 5] Especially the Bioperl library has established itself as a
standard tool for bioinformaticians.

PHP

Originally developed to build dynamic homepages and interpret form submissions, PHP
has evolved to a sophisticated general-purpose language with included command-line
capabilities. Like Perl, which PHP borrows heavily from, it is a scripting language,
meaning it must be run by an interpreter, usually implemented as a web-server module.
[72, 74]

Though PHP can be mixed with HTML, for large web-applications this practice is
rather discouraged, as it often results in convoluted code with mixed concerns. Instead,
various templating options exists to achive separation of presentation and business logic.
An simple example of PHP code embedded in HTML is presented in Listing 2.6, more
elaborate examples can be found in section 2.4.4 on page 16.

11

2 Introduction

Listing 2.6: Example of PHP code embedded in HTML

<html >
<body >

<h1 >Greetings </h1 >
<?php

$name = ’Bob ’;
echo "<p> Hello $name </p>";

?>
</body >

</html >

Mustache

Mustache is a so-called logic-less templating language. Templating languages facilitate
the separation of business and presentation logic of applications. Logic-less templating
engines even more so than their counterparts, allowing only the simplest of conditionals
and iterations. Though this may seem like a handicap, it actually enables easy and
fast rendering engines to be implemented in every programming language. Mustache
has been chosen because of its adjacency to HTML and the availability of PHP and
JavaScript rendering engines.

Source code 2.7 gives an example of how Mustache is being used in PHP. Mustache
encloses its templating logic in double curly braces (hence the name, Mustache {).

Listing 2.7: Example of an Mustache template (greetings.html) and how it is rendered
(index.php).

/* greetings .html */
<html >

<body >
<h1 >Greetings </h1 >
<p> Hello {{ name }}! </p>

{{# favoriteColors }}
{{ color }}
{{/ favoriteColors }}

</body >

</html >

/* index .php */

/* Load the template string . */
$template = file_get_contents (’greetings .html ’);
/* Create a context to be renderd . */

12

2.4 Web-Application development

$context = [’name ’=> ’Bob ’,
’favoriteColors ’ => [[’color ’=>’red ’],

[’color ’=>’blue ’]]];
/* Use the Mustache rendering engine to create

an HTML string */
$html = Mustache :: render ($template , $context);
print ($html);

/* output */
<html >

<body >
<h1 >Greetings </h1 >
<p> Hello Bob !</p>

red
blue

</body >

</html >

SQL

SQL is a special-purpose programming language designed for managing data in rela-
tional database management systems. It is used for creating, reading, updating and
deleting data (create, read, update, delete (CRUD)). Additionally, it is used for schema
creation, schema modification and access control. A very simple example of an SQL
query is presented in Listing 2.8.

Listing 2.8: Minimal example of an SQL expression

SELECT * /* select all columns */
FROM Books /* in the table ‘Books ‘ */
WHERE price > 100.00 /* where the value in the column */

/* ‘price ‘ is larger than 100.00 */
ORDER BY title; /* and order the results by the */

/* values of column ‘title ‘ */

Markdown

Markdown is a plain text formatting syntax, designed to be easily understood with-
out prior experience of markup languages. It is popularly used in readme files and
online discussion forums. [42] Its syntax is easily translated into HTML, making it an
ideal format to create simple pages without dealing with HTML markup. An simple
Markdown document is found in Listing 2.9.

13

2 Introduction

Listing 2.9: Example of an Markdown Document

Heading
=======

Sub - Heading

Paragraphs are separated by a blank line. Text can be
formatted * italic *, ** bold ** and ‘monospace ‘

2.4.4 Object-oriented programming

Object-oriented programming (OOP) is a program design philosophy, which evolved
as the logical extension of long established practices like structured programming. It
is an approach to design modular, reusable software systems. Rather than structure
programs as data and functions, object-oriented systems integrate the two using objects
which carry a state - the data - and methods to act upon this state - the functions.
These objects are used to interact with each other to design computer programs.

Some programming languages like JAVA and Objective-C only support OOP. Lisp and
Haskell, on the other hand, allow only a functional programming style. The program-
ming languages used to build the BioCatNet, PHP, Perl and JavaScript, all support
object-oriented as well as functional programming styles. For the programming of
website-back ends in PHP, the object-oriented model-view-controller pattern, outlined
in subsection 2.4.5 on page 20, has established itself as the de-facto standard, though.

Encapsulation is a key feature of object oriented programming, used to section off
responsibility of handling data to well-defined code modules. While an object may
have an complex state (meaning it holds complex data), usually, only part of its state
is exposed through its behaviors (methods).

Classes are blueprints or templates to build a specific type of object. The objects
your_car and my_car, for example, would both be of class Car, sharing common
methods like function startEngine() and function stopEngine() while having dif-
ferent states of color or power. A simple example of class declaration and usage in
the programming language PHP is presented in Listing 2.10.

Class Inheritance allows for code reuse. Let’s say your_car is of class Truck
while my_car is of class Van. Instead of describing the behavior function startEngine()
in both classes, we can define a new class Vehicle. Both descending classes class
Truck inherits Vehicle and class Van inherits Vehicle will be able to use their
parent’s methods. Any inherited method or property can be overridden in the class
definition.

14

2.4 Web-Application development

SOLID is an mnemonic acronym that stands for the five basic principles of object-
oriented programming and design:

Single responsibility principle says that any class should have only one responsi-
bility.

Open/closed principle states that software entities as classes and objects should be
open for extension, but closed for modification.

Liskov substitution principle declares that objects in a program should be replace-
able with instances of their descendants without altering the correctness of that pro-
gram.

Interface segregation principle says that many client-specific interfaces are better
than one general-purpose interface.

Dependency inversion principle states that one should depend upon abstractions
instead of concretions. In practice this means that functions and methods should
be designed to only read/write to their containing object or passed parameters. In
object-oriented languages this is achieved via the dependency injection pattern, where
operands are explicitly passed to a function instead of depending on globally defined
variables. An example of how such a pattern is realized and the accompanying anti-
pattern are presented in Listing 2.10. In functional programming a similar paradigm
exists, advising the use of pure functions, which only ever read/write to passed param-
eters.

Listing 2.10: Example of dependency injection in PHP.

class Person {
public $name ;
public function __construct ($name){ $this ->name = $name ; }

};

/* Example of an greeting function depending on an concrete
* implementation , $bob. This is an anti - pattern violating
* the dependency inversion principle
*/

$bob = new Person (’Bob ’);
function sayHelloToBob (){

print (’Hello ’ . $bob ->name);
}
sayHelloToBob (); // ’Hello Bob ’

/* Example of an greeting function depending on an abstract ,
* where the concrete implementation is passed to the
* function explicitly . This is the correct pattern for
* dependency injection .
*/

function sayHelloToPerson (Person $person){
print (’Hello ’ . $person ->name);

15

2 Introduction

}
sayHelloTo ($bob); // ’Hello Bob ’

Object-oriented PHP

Having a class-oriented approach to objects, PHP has some advanced object-oriented
programming features.

Visibility Which properties and methods of an object are exposed is described in
the class definition by the use of visibility keywords. For PHP, these keywords are
public, private and protected. If no visibility is specified, public is assumed by
the Interpreter.

Interfaces are a means for unrelated objects to communicate with each other, a set
of methods, arguments and return values which the objects agree upon in order to
cooperate. The implementation is up to the class’ definition.

Typehinting forces the parameters of a function or method to be of the given class
or interface, an array or an function.

As a scripting language, PHP is dynamically typed. Thus, errors resulting from using
wrong parameter types are only discovered at runtime. This in turn means that every
function has to be properly tested. An elaborate example of how to work with classes
in PHP is presented in Listing 2.11.

Listing 2.11: Class inheritance in PHP

/* a class definition starts with the keyword ‘class ‘
* followed by the class name (capitalized by
* convention) and the class definition in braces
*/

class Vehicle
{

/* a method definition starts with a keyword stating the
* visibility and the keyword ‘function ‘, followed by
* the methods ’ arguments in parenthesis and the
* function body in braces . Class properties also start
* with a visibility keyword
*/

public $num_wheels = 4;
public function startEngine () {...}
public function stopEngine () {...}

}

/* new instances are spawned using the ‘new ‘ keyword .
* instance properties and methods are accessed
* with the arrow ‘->‘.

16

2.4 Web-Application development

*/

$my_car = new Vehicle ();
print ($my_car -> num_wheels); // prints ’4’
$my_car -> startEngine ();

/* PHP ’s inheritance is indicated by the ‘extend ‘ keyword */

class Van extends Vehicle {}

/* The next class ‘Truck ‘ will define an additional method
* that is not known to ‘Vehicle ‘ or ‘Van ‘
*/

class Truck extends Vehicle
{

private $cargo = array ();
// this overrides the inherited value
public $num_wheels = 6;
public function lowerCargoBed () {...}

}

$my_car = new Van ();
$your_car = new Truck ();

$your_car -> startEngine (); // works fine
$my_car -> startEngine (); // works fine
$your_car -> lowerCargoBed (); // works just as fine
$my_car -> lowerCargoBed (); // will raise an error because

// the method is undefined
print ($your_car -> num_wheels); // prints ’6’
print ($your_car -> cargo); // will raise an error because

// ‘cargo ‘ is private

/* The definition of an interface starts with the keyword
* ‘interface ‘ followed by the interface name. An interface
* method defines the method name and the number , name and
* type of arguments . No function body is given , because
* the implementation is up to the class definition . */

interface Electric
{

public function chargeAt (ChargingStation $station);
}

/* the implement keyword indicates the use of an interface */

class EBike extends Vehicle implements Electric

17

2 Introduction

{
public $num_wheels = 2;
public function chargeAt (ChargingStation $station){...}

}

/* this definition will raise an error , because it is not
* fulfilling the contract defined by the interface
*/

class ECar extends Vehicle implements Electric
{

public function chargeAt (Tree $station){...}
}

$my_bike = new EBike ();

/* the ‘instanceof ‘ keyword checks if an object is of the
given

* class or implements the given interface .
*/

if ($my_bike instanceof Electric) {
print (’true ’);

}
// prints true
if ($my_bike instanceof Vehicle) {

print (’true ’);
}
// prints true

$home = new ChargingStation ();
$tree = new Tree ();

$my_bike -> chargeAt ($home); // works fine
$my_bike -> chargeAt ($tree); // will not work

Overloading provides means to dynamically create class properties and methods.
Overloading methods are invoked when undefined or unaccessible properties or methods
are interacted with. [51] An example of this pattern is presented in Listing 2.12.

Object-oriented JavaScript

Being a weakly and dynamically typed language, and following a prototypal approach
to object inheritance, JavaScript object operations may seem very unusual to a pro-
grammer. JavaScript has no notion of interfaces or visibility per se and it does not
provide typehinting. Some commonly used patterns exists to provide some version of
these functionalities, but most commonly developers rely on proper documentation.

18

2.4 Web-Application development

Listing 2.12: Example of overloading in PHP.

class Person () {};
$bob = new Person ();
$bob ->sayHi = function (){ return "Hi";};

print (’Bob says ’ . $bob -> sayHi ());
/* This method call tries to access the method ‘sayHi ‘

* of the class ‘Person ‘, which is not defined and thus
* throws the following error :
* Fatal error : Call to undefined method Person :: sayHi ()
*/

class BetterPerson (){
__call ($method , $arguments) {

return call_user_func ($this -> $method);
}

};
$pete = new BetterPerson ();
$pete -> sayHi = function (){ return "Hi";};

print (’Pete says ’ . $pete ->sayHi ());
/* This method call , too , tries to access the same method .

* Because ‘sayHi ‘ is not defined for the class ‘Person ‘,
* the method ‘__call ‘ is called instead with the name of
* the inaccessible method and the passed arguments as
* arguments : ‘$pete -> __call (’ sayHi ’, []) ;‘. This in turn
* calls ‘call_user_func ‘, which is able to execute the
* demanded method , resulting in the correct output :
* Pete says Hi
*/

If a property or method is requested from an object, and it does not exist on this object,
the interpreter walks up the objects prototype chain to find the requested property or
method.

Listing 2.13: Object Oriented JavaScript

1 /* Object constructors in JavaScript are plain
2 * functions invoced with the ‘new ‘ keyword.
3 * Public instance methods and properties are
4 * attached to the ‘prototype ‘ property of the
5 * constructor , public class methods and properties
6 * directly on the constructor. The ‘this ‘ keyword
7 * refers to the newly created instance itself. */
8
9 function Person (name) {

10 this.name = name;

19

2 Introduction

11 Person.numberOfPeople ++;
12 }
13
14 /* properties and methods attached to Person
15 * are public class methods / properties
16 */
17 Person.numberOfPeople = 0;
18
19 /* Every ‘Person ‘ object inherits properties and
20 * methods of Person.prototype.
21 */
22 Person.prototype.greet = function (){
23 print ("Hello , my name is " + this.name);
24 }
25
26 var bob = new Person (’Bob ’);
27 bob.greet (); // Hello , my name is Bob
28 Person.numberOfPeople === 1; // true

2.4.5 Model-view-controller Architecture

Model-View-Controller is an architectural pattern applied in application development,
facilitating the application of the five SOLID guidelines. It is a three-way factoring,
whereby objects of different classes take over the operations related to the application,
the display of the application’s state and the user interaction with the model and the
view. [56]

Software-internal representation of information is separated from the ways information
is presented to or accepted from the user. Models read, hold and write data, controllers
perform actions and calculations, views present data to the user and register user
actions.

The model of an application is the implementation of the application’s central struc-
ture. It can be as simple as an integer (as the model of an counter) or as complex as
an object with various properties and methods.

Views deal with everything graphical (or representational, more generally). They
request data from their model and forward user-actions to a controller. In some im-
plementations, instead of requesting data from their model, the data is pushed to the
view by the controller, breaking the coupling between the view and the model.

Controllers contain the interface between their associated models and views and the
user input. In the case of applications with a graphical user interface (be it desktop-
or web-applications) the user does not act on the controller itself; instead, the view
forwards user-actions to the controller.

20

2.4 Web-Application development

Model

View Controller

User

updates

presents uses

manipulates

Figure 2.1: A typical collaboration of MVC components.

Routing is a technique which gained prominence with the rise of web-applications.
Not classically a part of the model-view-controller (MVC)-pattern, this process trans-
lates URLs requested by the client into controller-actions on the server. It also helps
to decouple controllers from one another, if there are any dependencies.

For example, take the action of displaying experiments a user has saved in his pro-
file. In a classical MVC-pattern this would be achieved by an URL like the fol-
lowing: $baseurl/experimentController.php?action=showExperiments&userID=
1. The full control of the HTTP request is passed directly to the userController.
Any actions associated with the display of stored experiments are to be performed
from this controller. This includes connecting to the database, authenticating the vis-
itor, finding the correct user profile and accociated experiments. Even if the code is
split in reusable modules, these need to be explicitly aware of one another, in other
terms, they are tightly coupled.

By using a router as a dependency container, controllers do not depend on an specific
implementation of another module, but are expecting the dependency container to
provide a suitable module. In our example, this results in a loose coupling between the
userController and the module responsible for database access.

Using a router, one can also use a more human-friendly URL for the action from our
example: $baseurl/user/1/experiments or $baseurl/experiments/byUser/1. In
fact, the router can be set up to provide the same result for both request URLs. This
setup results in a slightly modified MVC-pattern, as is portrayed in Figure 2.2.

2.4.6 API

An application programming interface (API) specifies a software component in terms
of its functions and expected input and output data types. Its main purpose is to
define functionalities independent of their respective implementation. APIs provide
means to access data, computer hardware, graphical user interfaces (GUIs) and connect

21

2 Introduction

client

User

View

server

Model

Controller

Router

presents uses

forward actions

invoces

manipulates

updates

Figure 2.2: Modified MVC-pattern established in web-applications.

otherwise distinct applications. Additionally, APIs can provide access to services on
remote machines.

For the communication between APIs, various message protocols and formats exists.
API calls to local functions are usually performed directly. In large-scale business pro-
cesses elaborate software architectures involving various proprietary message protocols
and message types are used, while most web services favor HTTP and XML. In recent
years, JavaScript Object Notation (JSON) has gained importance as a message type.

XML is a sibling to HTML, and various derivatives are used throughout computer
programs from office-productivity tools like Microsoft Office to communication proto-
cols and configuration files. It is based around elements and attributes, Document Type
Definitions and XML Schemas provide powerful tools for data validation. An simple
example of an record representing a person is provided in Listing 2.14.

22

2.4 Web-Application development

Client experimentController

dbController

userController

HTTP Request

HTTP Response

calls

Client Router

dbController

userController

experimentController

HTTP Request

HTTP Response

calls

Figure 2.3: Control flow of an HTTP Request in the (a) classical and (b) routed mvc-
pattern.

Listing 2.14: Example of an XML document

1 <p erson >
2 <firstName >John </ firstName >
3 <lastName >Smith </ lastName >
4 <age >25</ age >
5 <address >
6 <streetAddress >21 2nd Street </ streetAddress >
7 <city >New York </ city >
8 <state >NY </ state >
9 <p ostalCode >10021 </p ostalCode >

10 </ address >
11 <p honeNumbers >
12 <p honeNumber type="home">212 555 -1234 </p honeNumber >
13 <p honeNumber type="fax">646 555 -4567 </p honeNumber >
14 </p honeNumbers >
15 <gender >male </ gender >
16 </p erson >

23

2 Introduction

JSON is promoted as a low-overhead alternative to XML. Using curly braces ({})
and brackets ([]) instead of repetitive opening and closing tags, JSON documents are
often smaller than XML documents. Similar to XML Schemas and XML Document
Type Definitions, JSON Schemas can be used for data validation. The example in
Listing 2.15 depicts the same record which has been shown in the XML example in
Listing 2.14.

Listing 2.15: Example of an JSON document

1 {
2 "type": " person ",
3 " firstName ": "John",
4 " lastName ": "Smith ",
5 "age": 25,
6 " address ": {
7 " streetAddress ": "21 2nd Street ",
8 "city": "New York",
9 "state ": "NY",

10 " postalCode ": "10021 "
11 },
12 " phoneNumbers: [
13 { "type": "home", " number ": "212 555 -1239" },
14 { "type": "fax", " number ": "646 555 -4567" }
15],
16 " gender ": "male"
17 }

24

3 Aims

For more than a decade now, DWARF was the foundation of over a dozen FSPDs,
created, curated and published at the ITB. [76, 26, 53, 63, 28, 37, 38, 66, 78, 64,
55, 77] These databases flexibly combine information about protein sequences kinship,
functional annotation and structure information from a variety of sources, and custom
tools to aid in the development of biocatalysts. A previously planned extension would
have allowed the FSPDs to store not only functional sequence annotations acquired from
other database sources, but to collect discrete information about functional parameters
from bench scientists directly. For this to accomplish, the data model underlying
the DWARF has been reevaluated and changed severely. Because the user interface
provided by DWARF could not easily accommodate the extended data model and
functionality that goes with it, it was decided that the whole platform would need a
thorough refactoring and the result would be published under the name BioCatNet.

BioCatNet now aims to be an updated platform for comprehensive repositories of
family-specific protein sequence, structure and functional information. In addition,
the platform shall provide tools for the analysis of biochemical information as well as
support collaboration and the exchange of knowledge about experimental setups, con-
ditions and outcomes to support journal publications. Naturally all posted data must
be handled confidential until the original author decides to publish it.

The present thesis describes the authors contribution to the development of the Bio-
CatNet, namely the development of an application back end, including database access
and user management, an web-based application front end, contributions to the shape
of the data model and contributions to the set up and maintenance of the server and
application environment.

3.1 Data acquisition

The acquisition and curation of sequence and structure information has been a well-
established process at the ITB for many years now. The acquisition of data relevant to
protein function, on the other hand, was a rather recent idea developed by Constantin
Vogel in collaboration with members of the FOR1296 research group.

A prominent approach to acquire information about the biochemical properties of a
catalytic protein is to use data mining, successfully demonstrated by the enzyme in-
formation system BRENDA. A major drawback of this approach is the immense effort

25

3 Aims

needed to create and maintain text scraping algorithms, which are powerful and tol-
erant at the same time. Often, information is hidden in tables and figures, impeding
the extraction of information. Each scientific text emphasizes different key aspects
of the presented enzyme, omitting information, which in turn might be emphasized
in another writing. While the number of aspects gathered by data mining might be
large, the number of aspects common to all scraped scientific writings is rather narrow.
Simplified to a spreadsheet, this would mean a large number of rows and columns, but
only few columns wholly filled.

The BioCatNet shall emphasize the quality of the data over the quantity of entries
it contains. Therefore, a different approach was chosen to collect functional informa-
tion. While sequence and structure information is acquired by automated processes,
the heterogeneous biochemical information is collected directly from bench scientists.
Through a set of online forms, selected and comprehensive biocatalytic information can
be posted to the database. This of course requires a considerable amount of manual
labor, compared to data mining, but it ensures a consistently large set of details in
each database entry. Looking back at the spreadsheet comparison, this would mean a
large number of columns filled completely, while the number of rows is lower.

Therefore, BioCatNet needs an easy to use and appealing user interface for data sub-
mission. The interface must be intelligent and adaptive, streamlined and flexible to
encourage usage. Repetitive submission of duplicate data must be avoided, submission
of similar data accelerated. It needs an stable and scalable back end, which will handle
background processes as well as the validation and integration of posted data. This
back end must encompass an API, to enforce a strict separation between business and
data logic, and provide an easy programmatic access to the data for power users and
custom tools.

3.2 Standardization

As mentioned before, data mining yields entries with a broad set of details, but only
a small number of details is shared across all entries. Our approach to collect data
enforces a standardization of the database contents, yielding a wide set of common
details. At the same time, this approach enables us to store all information in an SI
compliant manner, improving standardization further. As an additional feature, all
data will be provided in an easy to use Application Programming Interface (API), as
well as standardized and cleanly formatted reports, to be used in custom analyses and
documentation.

3.3 Analyses

The large number of common traits makes an equally large number of interesting anal-
yses possible. While some analysis tools will be available on the BioCatNet front end,

26

3.4 Sharing, collaboration, publishing

the user will also have the option to download data for custom processing or use an
API to fetch and post information programmatically.

3.4 Sharing, collaboration, publishing

While the primary objective of the BioCatNet is the acquisition and analysis of bio-
chemical data, we want to try to improve collaboration, too. We want to enable lab
groups to collectively edit and review performed experiments, share analyses and com-
ment on techniques. Posted experimental data can also be made public, so that other
users of the BioCatNet can examine and comment on those findings. The main goal
we are pursuing with this feature, is to give users an easier and streamlined insight
into the current state of their respective field, so that they can better decide which
experiments need to be performed to make a progress.

3.5 Family-specific protein databases

While the most prominent protein databases like PDB and BRENDA try to encom-
pass all proteins under scientific investigation, the DWARF database system focused
on smaller subsets of related protein families. Since 2000, the group of Prof. Dr. Jür-
gen Pleiss at the ITB, University of Stuttgart, has published multiple versions of FSPDs
focusing on different protein families. All of these were build on the DWARF database
system, and as a successor, BioCatNet aims to carry future versions of these databases.
As section 5.7 on page 89 will describe in detail, several family-specific protein databases
have been ported to the BioCatNet system already.

27

4 Methods

This Chapter will describe applied hardware and software and give an insight into
the workflow and into some programming patterns used throughout the BioCatNet
codebase. Additionally, third-party libraries used on BioCatNet will be introduced.

4.1 Machine and operating system

BioCatNet is being developed and published on two separate Linux machines running
Debian operating systems.

The first machine, referred to as private subsequently, hosts the development and
master branches of BioCatNet. Equipped with an 16-core AMD OpteronTM6128 x64
processor and 64GB of RAM, this machine runs Debian GNU/Linux 7.5 (wheezy).
This machine is only reachable from within the institute network. The other machine,
equipped with an 8-core AMD OpteronTM8214 x64 processor and 16GB of RAM, runs
Debian GNU/Linux 7.5 (wheezy), hosts the master branch of BioCatNet, is reachable
from the internet and will be referred to as public subsequently.

4.2 Software

When deployed, BioCatNet depends only on two pieces of software, namely a database
server and an HTTP server, though the latter requires some advanced configuration
additional modules.

4.2.1 Database server

Because of its open source distribution and its longstanding and reliable presence within
the institute, Firebird has been chosen to be the database system underlying the Bio-
CatNet. Because of its superior performance on parallel queries, the Firebird super-
server implementation in the latest version 2.5 is being used on both, the private and
the public machine. Firebird is a relational DBMS , meaning it emphasizes consistent
data types and relationships.

29

4 Methods

4.2.2 HTTP server

Because of its robustness and popularity, Apache2 has been chosen to be the HTTP
server driving the BioCatNet user and application interface. Both machines are running
Apache/2.2.22 x64 prefork, which is handling most file requests while delegating more
elaborate HTTP queries to PHP scripts which are described in section 5.2 on page 42
and section 5.6 on page 52.

Notable extensions required for BioCatNet to work properly are mod-x-sendfile and
mod-rewrite. The former speeds up file downloads immensely, while the letter al-
lows for the use of descriptive URLs instead of hard-to-read query strings (compare
biocatnet.de/sequence/1 and biocatnet.de?page=sequence&sequenceId=1). The
most crucial extension though is mod-php5 which passes the HTTP request to PHP
scripts.

4.2.3 Bioinformatics tools

BLAST+ is a suit of tools provided by the NCBI. Improved algorithms and concur-
rent searches of sequence fragments provide an dramatically increased runtime com-
pared to other local alignment search methods. [15] Despite its use of heuristic meth-
ods, the accuracy of the produced alignments is considered to be more than adequate.
The BLAST+ suite exposes multiple command-line tools, two of which are being used
within the BioCatNet: blastp searches for sequences similar to an input sequence in
another set of sequences, which may be either a file containing multiple FASTA se-
quence entries, or an sequence database file optimized for the use with BLAST . These
databases are generated with the command line tool makeblastdb. The BLAST+ suite
is employed in the version 2.2.29+ on both BioCatNet machines.

Clustal-Omega is a general purpose MSA program for amino acid and nucleotide
sequences. [62, 17] Due to its use of advanced algorithms for calculating guide trees, it
can deal with many tens of thousands sequences in reasonable time with considerable
accuracy. It can align sets of sequences against each other and produce hidden Markov
Model (HMM) profiles for later alignment of novel sequences. Clustal-Omega is avail-
able as the command-line tool clustalo and its latest version 1.2.0 is being used on
both BioCatNet machines.

The standard numbering generator is currently not published openly and only
implemented for use within the ITB and BioCatNet as an Perl library. [68]

30

4.3 Workflow

4.3 Workflow

As described previously, the private machine hosts the development branch of the
BioCatNet. Using SSH , a command-line interface connection can be set up with the
machine. Development was conducted then using the command-line text editor GNU
Emacs and the version control tool git.

Development included mostly the following tasks:

• set-up, configuration and maintenance of the HTTP server

• set-up, configuration and maintenance of the Database server

• writing server-side code in PHP and Perl

• writing client-side code in HTML/Mustache, CSS and JavaScript

• integration of third-party-code on client- & server-side

• maintaining version control and publication to the public machine

• testing

4.3.1 Version control

To aid development and publication the open source version control tool git has been
used (see subsection 2.4.1 on page 8). Git is distributed, has a tiny footprint and is
being used in millions of projects including Android and Linux development.

The versioning workflow presented by Vincent Driessen has been adopted for the de-
velopment of the BioCatNet.[22] Two main project branches are declared for the Bio-
CatNet, development and master, with the latter being the stable release, published on
the public machine and used inside the institute on the private machine. Minor feature
and hotfix branches are created on-demand, worked on, merged and discarded.

4.3.2 Back end

The BioCatNet makes use of a couple of advanced PHP features and libraries. To un-
derstand the BioCatNet code base, one needs to understand these features and building
blocks.

Namespaces are a means to further encapsulate code. Namespaces are designed
to avoid name collisions between PHP-internal functions, third-party code and the
code you create. That way, you could use the functions like \Some\Library\sayHello
and \My\Library\sayHello side by side. For the BioCatNet, proprietary libraries
are available under the namespace ITB, the application itself resides in the namespace
ITB\BCN.

31

4 Methods

Autoloading abolishes the need for include statements in each and every file. While
it is a common practice for small projects to include code from other files and third-party
modules, it becomes a rather cumbersome task for projects consisting of hundreds of
files. With autoloading, the PHP interpreter looks up class names based on their
namespace at run-time. An instantiation of the class cebe\Markdown\Parser results
in an automatic inclusion of the file ./cebe/Markdown/Parser.php.

Method chaining is a simple technique to increase code readability and maybe
reduce memory usage by a few bytes by avoiding the creation of new pointers. Instead
of assigning the return value of an function to a variable, one can instantly call a method
of the returned object. If instance methods return the instance itself, one can perform
multiple operations on the instance in one expression. An example of this pattern can
be found in Listing 4.1.

Listing 4.1: Method chaining in PHP.

/* Method chaining on separate objects : instead of this */
$db = new DB (...);
$transaction = $db -> getTransaction ();
$query = $transaction -> getQuery (...);
$result = $query -> execute ();

/* with method chaining one can write this */
$result = New DB (...)

->getTransaction ()
->getQuery (...)
->execute ();

/* Method chaining on the same instance : instead of this */
$bob -> setName (’Bob ’);
$bob -> setAge (26);
$bob -> sayHello ();

/* with method chaining one can write this */
$bob -> setName (’Bob ’)

->setAge (26)
->sayHello ();

4.3.3 Front end

In contrast to regular PHP programs on a server, which are executed once and then
exited, JavaScript web-applications in a browser environment are executed inside an
event loop. This allows a decoupling of calling and response-processing code (which is
referred to as callback) and gives the JavaScript runtime a chance to do other things
while waiting for the answer.

32

4.4 Third party libraries

Building on that premise, event driven programming has evolved to be the predomi-
nant programming paradigm in JavaScript web-applications, where the program flow
is determined by events such as user actions, sensor outputs or messages from other
parts of the program or even other programs. Such event interactions are described in
Listing 4.2.

Listing 4.2: Event driven programming in Javascript

1 function sayhello (){ print(’Hello World ’); }
2 /* Every time ‘document ‘ emits the event ‘click ‘ the function
3 * ‘sayhello ‘ will be executed. In this case ‘sayhello ‘ is the
4 * callback function.
5 */
6 document.addEventListener (’click ’, sayhello);
7
8 /* Callbacks can also be defined anonymously , i.e. without
9 * prior function declaration and are often passed as

10 * an parameter to asynchronous functions.
11 */
12 require (’http: // www.biocatnet.de ’, function (response) {
13 print(’response received ’);
14 });

ASYNCHRONOUS JAVASCRIPT AND XML (AJAX) is the technique
used to load additional content without refreshing the whole web page. The JavaScript
XMLHttpRequest API, available in all browsers, is used to dispatch and react to HTTP
requests. It enables loading of document fragments, images and data.

4.4 Third party libraries

4.4.1 Mustache

As described in section 2.4.3 on page 12, Mustache is a logic-less templating language,
and the templating language of choice for the BioCatNet. Two implementations have
been used within the BioCatNet: The server-side implementation in PHP (bobthecow/-
mustache.php [32]) and the client-side implementation in JavaScript (janl/mustache.js
[40]).

4.4.2 Ketcher

Ketcher is a front end tool for drawing chemical molecules with back end support for
automatic layout and (de-)aromatization. The front end is written in pure JavaScript
and utilizes Scalable Vector Graphics (SVG) for rendering, abolishing the need for Java
or Flash plugins. The back end is a small python script running on the apache HTTP

33

4 Methods

server. Ketcher is free, open-source, and very easily integrated into existing websites.
[65]

4.4.3 Back end

Indigo is a universal, open-source organic chemistry toolkit developed by GGA Soft-
ware Services LLC. It contains first-class tools for end users and is free for non-
commercial purposes. Supporting a wide variety of chemical file formats as well as
automatic drawing of chemical compounds it is a valued toolkit among chemo- and
bioinformaticians. The BioCatNet uses the indigo toolkit to generate depictions and
canonical SMILES codes of chemical structures. The front end drawing tool Ketcher
also depends on functions provided by the indigo library. [34]

Open Babel is a chemical toolbox to convert between different chemical file formats,
rotate molecules, analyze conformers and many more tasks. On the BioCatNet, babel
is being used to calculate the molecular weight of chemical compounds. [48, 46]

Jbroadway/analog is a small logging package for PHP. Despite its small size, the
log format is customizable and it supports various logging handlers writing to local
files, emails and log management servers if need be. An invaluable extension when
debugging server-side code. [14]

Ircmaxell/password-compat is a library intended to provide forward compatibility
with password functions planned for the next PHP version 5.5. Functions provided by
this package are used to securely store obfuscated user passwords to the database and
compare them during user log-in. [25]

Cebe/markdown is fast and highly extensible markdown parser for PHP. It is used
to present the BioCatNet documentation, which itself is written in markdown format.
[13]

4.4.4 Front end

RequireJS is a popular and powerful JavaScript module loader. With a growing
number of front end modules it becomes difficult for the developer to manage module
loading efficiently in regards of module dependencies and page loading time. RequireJS
not only provides an simple to use library and a simple pattern to follow to alleviate
these issues. Moreover, it provides command-line tools to further condense and optimize
the front end code, to reduce page loading times even more. [57]

34

4.4 Third party libraries

jQuery is a cross-platform JavaScript library designed to simplify the manipulation
of HTML elements on websites. It provides an layer of abstraction to JavaScript
functions which often seem convoluted originally or have different implementations on
different browsers. Because of its high popularity and consequential influence in the
developer community even influenced the development of the JavaScript language itself.
[35]

Bootstrap is a popular HTML, CSS and JavaScript framework providing clearly
structured and aesthetically pleasing standard website layouts. Though the framework
has a focus on responsive websites - i.e. websites scaling well to the screen size - it is
an excellent framework also for desktop-sized web-applications. [10]

The JalviewLite Applet is a free and easily embeddable MSA viewer for websites.
While it does depend on Java being installed on the user machine, it provides supe-
rior functionality and very high performance. [71] The integration and usage will be
described in more detail in section 5.6 on page 52.

PV is a JavaScript viewer to visualize protein structures directly in the browsers.
It provides various visualization options and is performing extraordinary well on re-
cent browsers supporting WebGL. It’s main advantage the fact that it is written in
JavaScript and thus requires no additional add-ons on the client machine. [8, 9]

35

5 Results

At the time of this writing, version 2.4.16 of the BioCatNet is published at https:
//www.biocatnet.de. The TEED and Imine Reductase Engineering Database
(IRED) can be accessed directly at http://teeds.biocatnet.de and https://
ired.biocatnet.de, respectively. A first try of an documentation can be found at
https://wiki.biocatnet.de. Issues and feature requests can be posted at https:
//bugs.biocatnet.de.

Though BioCatNet is founded on DWARF, it has deviated significantly during devel-
opment. The data model has grown not only in size but in complexity and the user
interface has been recreated from scratch. Whereas the DWARF system provided sep-
arate user interfaces for administrators and users, the interface has been unified in the
BioCatNet.

The BioCatNet is build on various standard web technologies. The server-side code
is largely composed of PHP-scripts, arranged in an MVC-pattern (subsection 2.4.5 on
page 20). Only a few scripts are written in Perl, handling long-running tasks.

The websites presented to the user are build from Mustache templates on the server-
as well as client-side. The websites are styled using CSS and JavaScript provides
client-side functionality.

5.1 BioCatNet data model

Being founded on DWARF, BioCatNet has inherited its understanding of protein kin-
ship in terms of protein families, superfamilies, homologous families and proteins, with
the amino acid sequence being the single dimension to define the degree of relatedness.

Protein sequences which are found to show more than 98% similarity are defined
to belong to the same Protein. The protein 2-succinyl-5-enolpyruvyl-6-hydroxy-3-
cyclohexene-1-carboxylate synthase (protein#2649 from the latest TEED), for exam-
ple, encompasses 4 distinct amino acid sequences which differ in only a dozen amino
acids. Protein sequences which are more than 60% similar to one another, are grouped
to form homologous families. Superfamilies are defined by experienced curators tak-
ing into account protein structure and functions. Extending this hierarchy, BioCatNet
adds the notion of superfamily- and homologous family-groups, which are defined and
assigned manually based on protein function, notable sequence motifs or structural
characteristics.

37

https://www.biocatnet.de
https://www.biocatnet.de
http://teeds.biocatnet.de
https://ired.biocatnet.de
https://ired.biocatnet.de
https://wiki.biocatnet.de
https://bugs.biocatnet.de
https://bugs.biocatnet.de

5 Results

point to exactly one

point to one or more

point to zero or one

point to zero or more

SEQUENCES POSITIONS

ENTITY_NAME
entity_properties
...

Figure 5.1: Legend and examples describing data model relationships. Any SEQUENCES
entity is linked to at least one, but possibly more, POSITIONS entities, which
themselves are linked to exactly one SEQUENCES entry.

At the time of this writing, the BioCatNet data model encompasses 57 user, protein,
taxonomy and experiment-related entity types. Throughout the collaborative develop-
ment with Constantin Vogel, the number has been growing to accommodate new entities
and relations to arrive at a number more than twice as large than the DWARF’s 23
entities.

The figures in this chapter describe the data model, i.e. entity types and their rela-
tionships. The type of relationship between connected entities is portrayed in their
connector’s arrow tips. (Figure 5.1).

5.1.1 Data model related to the protein sequence

Most of the entity types related to protein sequences as well as to their source organisms
have been passed on from the original DWARF data model, though many relationships
have changed.

One notable change applied in the context of sequence information, is the introduction
of a SOURCES entity. Because the BioCatNet lays its focus on the amino acid sequence of
an protein, it is desirable that this sequence is unique within the database. On the other
hand, one particular protein sequence is not bound to any particular host organism.
The SOURCES entity describes the unique connection between an amino acid sequence
(SEQUENCES, Figure 5.3) and the organism it was found in (TAX_NODES, Figure 5.2 on
page 39).

The NCBI databases, which are the source for sequence information do not make this
distinction, neither does the PDB, which is why entities describing the connection be-
tween sequence information on the BioCatNet and foreign databases (PDB_ENTRIES,
DB_ENTRIES, DB) refer to a particular SOURCES entry rather than a particular SEQUENCES
entry. (Figure 5.2 on page 39)

To speed up database transactions and simplify user output, organism names have been
split into preferred and secondary names (TAX_NAMES and TAX_SYNONYMS, respectively).
Thus, each TAX_NODE entity is linked to exactly one TAX_NAMES entry and to zero or
more TAX_SYNONYMS entries.

38

5.1 BioCatNet data model

TAX_NAMES
name

TAX_NODES
rank
division

TAX_SYNONYMS
name

SOURCES
DB_ENTRIES
ac

PDB_ENTRIES
ac
chains

DB
name
url
abbreviation

Figure 5.2: Objects and relations of the BioCatNet data model related to organisms
and cross-database references.

The vertical protein sequence kinship hierarchy is realized with the S_FAM, H_FAM,
PROTEINS and the SEQUENCES entities. Horizontal kinship between superfamilies and
homologous families is established through S_FAM_GROUPS and H_FAM_GROUPS entities.
Considering the discussion provided by Fischer et al. [27], the amino acid sequence
is provided by distinct POSITIONS entries which point to a common SEQUENCES entry.
In addition, this separation enables the BioCatNet to provide a standard amino acid
position number with respect to standard numbering schemes.

Functional annotation is applied to proteins by the assignment of an Enzyme Com-
mission (EC) number and the corresponding EC database entity, if it can be inferred
from the sequence annotation. Sequence annotation is established by connecting an
ANNOTATIONS entry with an POSITIONS entry using the ANNOTATION_ENTRIES entity,
which points to the starting and ending position of an annotation. Because single
amino acids carry distinct properties, too, the data model holds two additional en-
tities describing amino acids and their properties (AMINOACIDS and AA_PROPERTIES,
respectively).

5.1.2 Data model related to structural information

Structural information is in part covered by the entities PDB_ENTRIES and DB, described
in the previous section. With SOURCES as an linking entity, multiple three-dimensional
structures may be assigned to a single amino acid sequence. Because the PDB may
store an X-ray structure of an multimer with heterogeneous chains, the chains property
will point out which of these are linked to the respective amino acid sequence.

Additionally to X-ray crystallography structures, TEED has implemented an algorithm
to predict three dimensional structures based on homology modelling. [68] In short, the

39

5 Results

S_FAM
superfamily
s_fam_desc

S_FAM_GROUP
group_name

H_FAM
h_family_name
h_fam_desc

H_FAM_GROUP
group_name

PROTEINS
protein_name
description

SEQUENCES
description
putative
synthetic

PROTEIN_REF_SEQ

POSITIONS
standard_position

ANNOTATIONS
description
color

ANNOTATION_ENTRIES
proven

AMINOACIDS
threeletter
aa_name

AA_PROPERTIES
description

SOURCESEC
ec_name

Figure 5.3: Objects and relations of the BioCatNet data model related to protein se-
quence.

algorithm finds and loads all PDB entries of the respective protein family database, per-
forms an structural alignment, and subsequently tries to find suitable templates in this
aligned structure library for sequences missing and experimentally determined struc-
ture. When successful, several homology models complete with analytics are computed.
This additional information about homology models and templates is stored across the
entities MODEL_MONOMERS, MODEL_TEMPLATES, potential protein-multimer information
resides within MODEL_MULTIMERS

5.1.3 Data model related to biochemical function

The decision to refurbish the DWARF database system and re-launch it as BioCat-
Net was driven by the need to incorporate information about the catalytic activity of
proteins. This refurbishment was accompanied by an extension of the data model to
cover kinetic parameters of the enzyme, environmental conditions of the experiment
and information about substrate and product specificities.

The central component of this extension is the EXPERIMENTS entity, pointing to exper-
iment conditions as well as to enzyme, substrate, additive and product compositions
over the course of the experiment.

40

5.1 BioCatNet data model

SEQUENCES
...

MODEL_MONOMERS
mo_name
ga341

MODEL_TEMPLATES
mt_name
pdb_ac

MODEL_MULTIMERS
mu_name

Figure 5.4: Objects and relation of the BioCatNet data model related to three-
dimensional structure and homology models.

The CONDITIONS entity, directly linked to EXPERIMENTS, holds information about the
temperature and pH-value of the reaction mixture as well as the pressure and shaking
frequency thereof. This entity also refers to a single BUFFERS entity, to describe the
solvent composition.

The entity type REACTIONS aims to generally describe reactions, i.e. what the reaction
type is and what the expected substrates and products of this reaction are, and is
therefore connected with one or more REACTION_TYPES and one or more COMPOUNDS. In
theory and practice, a single experiment can encompass multiple reactions which may
be concurrent or cascading. To accommodate this fact, EXPERIMENTS, too, is linked in
a one to one-or-more relationship to REACTIONS.

One or more ENZYME_FEEDS entities point to a single experiment, describing the point
in time and amount of enzyme added to the reaction as well as the solvent volume.
This entity forms the bridge between the EXPERIMENT and SEQUENCES entities. The
ENZYME_PREPARATION_METHODS entity holds detailed descriptions about the procedure
used to prepare the enzyme. This information can be as simple as a vendor and an item
identifier or as complicated as the engineering of expression strains and the purification
process thereafter.

The entity types SUBSTRATE_FEEDS and ADDITIVE_FEEDS store information about the
chemical compounds brought into the reaction. Like their counterpart, they describe
the solvent volume as well as the point in time, amount, and methods used to prepare
the respective chemical compounds. These are provided by the COMPOUNDS entity, while
the vendor or preparation method are stored as SUBSTRATE_PREPARATION_METHODS
entities.

The entity COMPOUND_MEASUREMENTS finally describes the concentrations of products
measured in the course of the reaction. Pointing to the entity METHODS, a detailed
description of the used measurement method is available, too.

41

5 Results

EXPERIMENTS
description

CONDITIONS
description
shaking_freq
pressure
scale
temp
ph

BUFFERS
description
name

REACTIONS
description

REACTION_TYPES
description

SUBSTRATE_FEEDS
pointintime
chemical_amount
volume

ENZYME_FEEDS
pointintime
amount
volume

ADDITIVE_FEEDS
pointintime
chemical_amount
volume
description

COMPOUNDS
parent_compound_id
smiles

COMPOUND_NAMES
name

COMPOUND_PREP_METHODS
description

ENZYME_PREP_METHODS
description

COMPOUND_MEASUREMENTS
pointintime
concentration

Figure 5.5: Objects and relations of the BioCatNet data model related to the experi-
ment set-up.

5.2 BioCatNet back end libraries

Following the convention, in the following, object class names are capitalized, like
Application, while object instances are lowercase variable names like $application.
When talking about static class methods, the scope resolution operator Paamayim
Nekudotayim, or simply double colon, is used, while instance methods of classes are
symbolized with an arrow (Application::init and $application->init, respec-
tively).

While there are several sophisticated PHP MVC-libraries available, it became clear
early on, that they do not fit our requirements. As a result, an proprietary MVC-library
has been created to host the BioCatNet. Similar is true for object-relational-mapping
libraries. All proprietary libraries are found in the lib folder of the BioCatNet dis-
tribution and are available in the ITB namespace. Besides those two already named,

42

5.2 BioCatNet back end libraries

proprietary libraries have been created to handle custom Exceptions, JSON parsing,
document types and support the creation of long-running tasks.

Within the BioCatNet, there are actually two libraries handling HTTP responses in
cooperation. Available under the namespaces ITB\MVC and ITB\Router, the former
supports the creation of objects fitting the MVC-pattern while the latter is responsible
for routing, i.e. managing the connection between user request, executed controller
actions and the response. The libraries ITB\MIME, ITB\JSON and ITB\Traits provide
supportive functions, ITB\Exceptions provides custom error classes and ITB\Worker
simplifies the interaction of PHP with unix tools.

5.2.1 ITB\Router

• ITB\Router\Application

• ITB\Router\Response

• ITB\Router\Request

Application Each HTTP Request is being handled by an object of the class
Application, which holds the configuration as well as instances of the object classes
Request and Response. In the BioCatNet, the Application class acts as the Router
described in section 2.4.5 on page 21. In the following, route will refer to the specific
sequence of controller actions associated with an user request.

Request class instances hold the HTTP request body, query string, and request
headers. The class provides convenience methods to check for data types the user
will accept and the freshness of the request. It will also carry custom data between
controller actions, acting as a dependency container.

Response class instances hold response headers and provide methods to facilitate
HTTP responses. Among others, methods for responding with JSON data, a file from
hard-disk or an simple status code are provided. It is also responsible for rendering
HTML templates and responding with HTML documents, using provided parameters.
The engine used for this rendering process is defined in and fetched from the Application
instance which created the response.

Objects of the classes Request and Response contain both a back-reference to the
instance of class Application which is holding them.

Once the $application object is initialized, it routes the instances of $request
and $response through applicable instances and methods of the object class
ITB\MVC\Controller. Each controller method receives the $request and $response
object and a continuation function $next, which must be called if the control is to be
passed to the next controller. Any method that is not passing the control back to the

43

5 Results

router by calling $next() must call $response->end to cleanly terminate the HTTP
connection. Otherwise, the HTTP request is terminated abnormally, resulting in a
Request Timeout for the end user.

5.2.2 ITB\MVC

• ITB\MVC\ControllerAbstract

• ITB\MVC\ModelAbstract

• ITB\MVC\StorableAbstract

• ITB\MVC\Collection

• ITB\MVC\DatabaseStorage

• ITB\MVC\Model

• ITB\MVC\DatabaseWrapper

• ITB\MVC\StatementWrapper

Controller objects have been mentioned already in the previous section.
Controller objects accessed by ITB\Router\Application need to inherit from
ControllerAbstract.

If present, the Controller::init method of each controller that has to be passed is
called. If any particular controller action is configured in the route, the corresponding
method is called next. Each method that is part of the current route receives the
$request and $response objects as well as the continuation method $next, and it can
modify these objects if need be. Database connections, for instance, are attached to
the $request object, while output parameters are attached to the $response object.
If $next is called, the control is passed back to the Application instance.

Model objects represent the data entities that an Controller instance can work
with. The BioCatNet defines its models in the namespace ITB\BCN\Models and they
inherit from ITB\MVC\ModelAbstract.

In the case of the BioCatNet, models have an extended functionality and serve as Ob-
ject Relation Mapping (ORM) elements, building the bridge between persistence-layer
entries and objects manipulated by Controller objects. To interact with a persistent
storage, Model entities expect an object implementing StorageInterface. Using this
$storage object, they create, retrieve, update and delete entries. Currently, the library
only provides a DatabaseStorage class, specific to the Firebird relational database
management system. Given the modular structure and the dependency on abstrac-
tions instead of concretions, one can easily extend the application to allow other forms
of persistent storage.

44

5.2 BioCatNet back end libraries

Working in conjunction with objects of the classes DatabaseWrapper and
StatementWrapper, objects of the class DatabaseStorage provide a layer of abstrac-
tion to database access, translating PHP statements into SQL queries. Listing 5.1
provides a simplified insight into the inner workings of these classes.

Listing 5.1: Simplified example of object-relation-mapping provided by the ITB\MVC
library

$dbWrapper = new DatabaseWrapper ($connectionOptions);
$storage = new DatabaseStorage ($dbWrapper);

// find a ‘Sequence ‘ object in ‘$storage ‘ where the
// property ‘sequence_id ‘ equals 1
$mySequence = Sequence :: findOne ($storage , [’sequence_id ’ =>

1]);

// an alternative form for the same command is
$mySequence2 = $storage -> findOne (’Sequence ’, [’sequence_id ’

=> 1]);

// DatabaseStorage :: find translates the arguments into
// an SQL query :
// SELECT FIRST 1 * FROM sequences WHERE sequence_id = 1;

// the table columns are mapped to object properties
echo $mySequence ->id; // prints 1
echo $mySequence ->name; // prints ‘pyruvate oxidase ‘

// using ModelAbstract :: findOne , only a single entry
// is returned , like in the cases above . Using
// ModelAbstract :: find , a collection is returned

$mySequences = Sequence :: find($storage , [’description ’ => ’~
pyruvate oxidase ’]);

echo count ($mySequences); // 827

Views are no PHP objects in the BioCatNet by default, but rather templates writ-
ten in the Mustache templating language (section 2.4.3 on page 12). Using templates,
BioCatNet achieves increased separation of presentation logic and business logic. Ad-
ditionally, Mustache templates can be shared between server- and client-side rendering
implementations increasing code-reuse.

In this sense, views are no part of the BioCatNet MVC abstracts library, but concrete
implementations within the BioCatNet application.

45

5 Results

5.2.3 ITB\JSON

• ITB\JSON\JSON

The JSON class provides methods for the conversion of PHP objects to the inter-
changeable JSON format and vice versa. It abstracts PHP’s own JSON encoding and
decoding methods and provides ways to read JSON files and parse JSON strings con-
taining comments. This capability is not defined within the JSON specifications, but
has proven to be an useful feature. Additionally, it provides a way to parse JSON data
into class instances directly.

5.2.4 ITB\Mime

• ITB\Mime\Mime

The Mime class provides methods to recognize data types by file extensions, to
recognize data types passed from user requests and check for data types the user might
expect, a functionality missing in PHP.

5.2.5 ITB\Traits

• ITB\Traits\URLTrait

• ITB\Traits\CallTrait

• ITB\Traits\CreateTrait

• ITB\Traits\ErrorLogTrait

• ITB\Traits\PermissionTrait

This library contains traits which can be injected into PHP class definitions. Traits
provide additional means for code reuse beside class inheritance.

URLTrait adds a method to construct a unique uniform resource locators (URLs) for
the respective class instance. Additionally, it overrides the classes serialization method
to always include the URL in the return value.

CallTrait appends the magic method __call to the receiving class. This feature
enables instance methods to be called which have been defined at runtime.

46

5.3 BioCatNet front end libraries

CreateTrait appends the static class method create to the receiving class, providing
an alternative to class instantiation using the new keyword. (Listing 5.2)
Listing 5.2: Example of an PHP class using ITB\Traits\CreateTrait.

class Person {
use CreateTrait ;

}

$bob = Person :: create ();
$pete = new Person ();

print ($bob instanceof Person); // true
print ($pete instanceof Person); // true

PermissionTrait adds methods and properties to the receiving class to determine
whether an object is readable and/or writable by an specified user.

5.2.6 ITB\Workers

• ITB\Worker\ShellWorker

The ShellWorker augments application calls at the system level. It supports back-
ground tasks as well as the definition of output and error files.

5.3 BioCatNet front end libraries

During development of the BioCatNet front end, several often used functionalities have
crystallized to small libraries, ready to be used modular and detached from the Bio-
CatNet. They reside within the directory pub/js/lib in the BioCatNet distribution.

The libraries obj.js, fn.js, string.js, arr.js are the most generic libraries and
provide some useful extensions in the context of JavaScript objects, functions, strings
and arrays. The libraries promise.js, eventEmitter.js and xhr.js simplify the de-
velopment of asynchronous functions in JavaScript. Functions from cookie.js simplify
access to HTTP cookies on the client side and param.js helps with the construction
and parsing of URLs.

The two libraries api.js and pubchem.js simplify the usage of the BioCatNet HTTP
API and PubChems HTTP API, respectively.

The library render.js provides an wrapper around the client site Mustache templating
engine, remote.js extends this functionality further and allows asynchronous fetching
of templates and data for the rendering process.

47

5 Results

5.4 BioCatNet application back end

The BioCatNet application itself resides in the directory app of the BioCatNet dis-
tribution and available PHP classes are available in the ITB\BCN namespace. The
application is comprised of different MVC-pattern components as well as some helper
modules which wrap around system calls and long-running tasks.

5.4.1 Models

The PHP classes defined in the ITB\BCN\Models namespace resigning in the app/
Models directory are mostly small classes of descriptive nature, inheriting virtually
all of their functionality from the library class ITB\MVC\ModelAbstract. Acting as
ORM elements, they provide a means to manipulate the database in an object-oriented
manner. As such, they correspond directly to the data entities defined in section 5.1 on
page 37. The few classes which provide functionality beyond this scope, are described
in the following.

ITB\BCN\Models\User has additional methods to encrypt user passwords before
they are saved to the database as well as a method to check if a given password matches
the password provided by the user.

ITB\BCN\Models\TaxSibling does not correspond to a database entity, but by
adopting the common models interface, it provides a homogeneous method to find
taxonomic nodes which share the same parent node.

ITB\BCN\Models\Sequence is the larges model class with the greatest number
of additional functions. It provides various methods to access related data like associ-
ated structures and sources, construct a sequence representation in FASTA format, and
enrich the sequence instance with functional annotations as well as family relations.

5.4.2 Views

As described in subsection 5.2.2 on page 44, views in the BioCatNet are no PHP classes
as the original MVC pattern would suggest but rather HTML templates written in
Mustache. While the templates used for the general page layout reside in the directory
app/Views/layout, the rest is organized in page-specific subdirectories within app/
Views.

48

5.4 BioCatNet application back end

5.4.3 Controllers

Most Controller classes in BioCatNet directly correspond to one or more pages of
the graphical user interface. Those which do will be described together with the user
interface they are presenting in section 5.6 on page 52. The API controller will be
described in detail in section 5.5 on page 50. The others will be outlined briefly in this
subsection.

ITB\BCN\Controllers\Cookie is a small utility class that is usually loaded before
any other controller and handles, as the name implies, HTTP cookies. It attaches itself
to the current instance of ITB\Router\Request, so that any following controller can
make use of its functions.

ITB\BCN\Controllers\Session depends on the cookie controller described pre-
viously and establishes a way to preserve data across subsequent access. A session
is limited to the same user/machine/browser combination and to a certain time-span.
This controller wraps around the native session functionality of PHP to provide object-
oriented methods for the manipulation of sessions. Like the cookie controller, it attaches
itself to the current instance of ITB\Router\Request.

ITB\BCN\Controllers\Cache provides a way to preserve a larger amount of data
in memory than the cookie and sessions controllers are capable to do. It wraps around
the apc extension of PHP, and attaches itself, like the two controllers mentioned before,
to the current instance of ITB\Router\Request.

All of the above mentioned controllers expose a simple, homogeneous, object-oriented
syntax, with methods the methods get(key) and set(key, value) to manipulate
underlying structures.

ITB\BCN\Controllers\Flash exposes developer-friendly methods to create user
notifications to be displayed in either the current request or in subsequent ones. This
controller depends on the session controller to store the user messages and is attached to
the current instance of ITB\Router\Response, as it is closer related to user output.

ITB\BCN\Controllers\Database is responsible for the database connection and
exposes, by initializing objects from the ITB\MVC library, primitive methods for database
interaction.

ITB\BCN\Controllers\Workbench contains a group of controllers which control
long running tasks, the input of experiment data and storage of intermediate input data.
The respective components are described in detail in subsection 5.5.1 on page 51 and
subsection 5.6.10 on page 70.

49

5 Results

5.4.4 Worker

The directory app/Workers harbors the scripts used for long-running tasks like the
generation of BLAST databases and sequence alignments. Those functionalities will be
discussed in detail in subsection 5.5.1 on page 51 and subsection 5.6.10 on page 70.

5.5 BioCatNet API

Early in the BioCatNet development it was clear, that we want a strict separation be-
tween the business and presentation logic. Not only would this comply to the Separation
of Concerns paradigm defined in subsection 2.4.4 on page 14, but also ease the access
to BioCatNet data and function from clients other than the BioCatNet website.

The communication between business logic and presentation logic, or any other client,
is enabled by an HTTP API. An abundance of HTTP libraries is available for every
programming language, making the API easy to use with little programming experi-
ence.

To perform basic CRUD-Operations, a dedicated URL route is available at $baseURL/
API. To fetch a list of sequences matching some naming pattern, for example, one
can simply issue an HTTP GET request to the URL $baseURL/API/sequences?name=
$pattern.

The API returns results in JSON format, described in subsection 2.4.6 on page 22, if
not stated otherwise. In general, READ operations are performed issuing an HTTP
GET request:

• $baseURL/API/$collection/$id

• $baseURL/API/$collection[?$parameters]

While the first pattern returns exactly one item, the latter API call will return a list
of items. $parameters is a URL query string formatted according to RFC3986 section
3.4 [7]. If $parameters is present, the values present therein will limit the result set.
Parameter keys applicable to all collections are the following:

• offset defines how many items will be skipped

• limit defines the number of items to be returned

• include defines which related objects will be fetched

If not explicitly defined, offset and limit are implied to equal 0 and 100, respec-
tively. Any additional parameter key is assumed to be an item property that has to
match the parameter value. With the parameter include, one is able to include re-
lated elements in the result set. With the URL $baseURL/API/Sequences?include[]=
Protein&include[]=ProteinRefSeq, for example, one may retrieve a list of Sequences
and the connected Protein and ProteinRefSeq entries.

50

5.5 BioCatNet API

The returned object will, if not declared otherwise, contain the properties

• request which reflects the query parameters passed to the API

• response length a numeric value reflecting the number of items returned in the
result set.

• response the actual response set. This may be either an array of uniform items
or an single item, depending on the used URL pattern.

5.5.1 Long running tasks

The invocation of long running tasks is handled through the controllers in the
namespace ITB\BCN\Controllers\Workbench. These controllers make use of the
ITB\Worker\ShellWorker class to start a task and send it to the background, giv-
ing the user an immediate response while the task is still running. While there are
user-driven long running tasks, like the BLAST search and the application of a Stan-
dard Numbering Scheme on a user-defined protein sequence, the tasks described in
this section are of administrative nature and thus only available for database curators
through the workbench interface described in subsection 5.6.10 on page 70. A short
description of the inner workings of these tasks is described in this section.

generate_blastdb.pl collects all amino acid sequences present in the FSPD into
one large FASTA file and uses the command makeblastdb from the BLAST software
suite provided by the NCBI. This creates a BLAST database which can then be used
to find homologues to sequences provided by the user through the workbench GUI or
the API, described in subsection 4.2.3 on page 30.

generate_alignments.pl automatically generates multi sequence alignments for ho-
mologous and superfamilies of protein sequences within the FSPD. For this, it uses the
MSA tool clustalo which has been described in subsection 4.2.3 on page 30.

annotate_alignments.pl creates feature annotation files for the use within the
Jalview MSA viewer. For this, it reads the previously generated MSA, fetches the re-
spective sequence annotation information from the FSPD and creates a Jalview-specific
feature annotation file. What the results will look like, will be presented in subsec-
tion 5.6.6 on page 58.

build_tax_tree.pl and build_seq_tree.pl are used to create binary trees for the
taxonomy and sequence-related entities of the FSPD. A binary tree is a data structure
which enables access to hierarchy information a magnitude faster than with the rela-
tional data model. The drawback of binary trees is the effort that needs to be spent
to update the structure upon insertions or deletions, which is why in the BioCatNet,
both data models are used cooperatively.

51

5 Results

BCN_donumbering_thdp.pl is the script which applies a Standard Numbering
Scheme to a user-provided amino acid sequence using a pre-build BLAST database
and HMM profiles.

5.6 BioCatNet website

As mentioned before, BioCatNet is publicly available at https://biocatnet.de. The
welcome page presents news about the BioCatNet project as well as links to the different
family-specific protein database build on top of BioCatNet (Figure 5.6 on page 53). The
user will also find links to the BioCatNet wiki and bugtracker.

5.6.1 Wiki

The BioCatNet documentation is available at https://wiki.biocatnet.de. This doc-
umentation shall provide users an overview of the capabilities as well as an guide to
how to use the BioCatNet. (Figure 5.7 on page 54)

5.6.2 Issues and feature requests

The bugtracker for the BioCatNet can be viewed at https://bugs.biocatnet.de. It
lists the known issues, their severity and status, and gives users the opportunity to post
issues they encounter while using the BioCatNet. (Figure 5.8 on page 55).

52

https://biocatnet.de
https://wiki.biocatnet.de
https://bugs.biocatnet.de

5.6 BioCatNet website

Figure 5.6: Screenshot of the BioCatNet welcome page as it can be seen on http:
//biocatnet.de. At the top, links to the documentation and the bug-
tracker are provided. At the bottom, news from the BioCatNet project are
presented. The segments of the large BioCatNet logo in the center link
to the different FSPDs. Upon hovering over an fragment, the fragment
changes its color and informs the user which FSPD is lying under that seg-
ment (red box), as it can be seen for the green segment, which is linking to
the TEED.

53

http://biocatnet.de
http://biocatnet.de

5 Results

Figure 5.7: Screenshot of the BioCatNet wiki as it can be seen at http://wiki.
biocatnet.de. At the top, links to the homepage and the bugtracker are
provided. The menu on the left takes the user to the different documenta-
tion pages.

54

http://wiki.biocatnet.de
http://wiki.biocatnet.de

5.6 BioCatNet website

Figure 5.8: Screenshot of the BioCatNet bugtracker as it can be seen at http://bugs.
biocatnet.de. At the top, links to the homepage and the documentation
are provided. The from at the top gives users the opportunity to inform
the developers about issues in the BioCatNet they might not be aware of.
The list below the form shows a summary of known issues, their status and
their severity. Each issue links to a page with the details of the issue.

55

http://bugs.biocatnet.de
http://bugs.biocatnet.de

5 Results

5.6.3 Family-specific protein databases

As of the time of this writing, two FSPDs have been published on top of the BioCatNet
platform. These are the TEED, [69] available at https://teed.biocatnet.de and the
IRED [61], available at http://ired.biocatnet.de. In the following, the details of
the BioCatNet web application will be described using the TEED as an example.

Upon reaching an FSPD, the user is presented with a short welcome screen specific to
the FSPD (Figure 5.9 on page 57). Here, the user will find a short description of the
database, the names of the curators, and a list of publications which should be cited
when publishing results supported by the BioCatNet.

From here, the user can choose to browse the database by choosing a specific page,
perform a search in the sequence and taxonomy database, or register as a contributer
to the database.

5.6.4 Search view

When choosing the search icon from the top navigation, a search form slides down
from under the navigation bar. Here, the user can choose to perform a BLAST search,
jump quickly to a detail page, search for sequences or super/homologous families by
different criteria or search for an organism. (Figure 5.10 on page 58 to Figure 5.14 on
page 60).

5.6.5 Sequence browser

The sequence browser presents the sequences known to the FSPD in different views,
representing the different hierarchical sequence kinship levels, as discussed in section 5.1
on page 37.

An overview of all known superfamilies is presented when the user chose the Se-
quence tab from the top menu. Below a short statistical overview, presented as dough-
nut diagrams, the superfamilies are listed along with some detailed parameters. From
here, the user can choose to print the overview, perform a search, sort the superfamily
list by different criteria, download the list, or display one superfamily in more detail.
(Figure 5.9 on page 57)

The print view is available throughout every level of the sequence and taxonomy
browser via the print icon (). As the BioCatNet is optimized to printed output, one
can simply use the usual print command from the browser, too.

56

https://teed.biocatnet.de
http://ired.biocatnet.de

5.6 BioCatNet website

The superfamily and homologous family views are opened when the user selects
a specific superfamily or homologous family. Similarly to the FSPD overview page, the
user will be presented with a short description of the subfamily, some statistics, and
the opportunity to view or download the MSA for all the sequences of this subfamily.
Below, the homologous families or proteins contained in this superfamily or homologous
family are presented, respectively. (Figure 5.16 on page 62)

The superfamily and homologous family group views are opened when the user
selects a family group from the overview or superfamily view pages. These pages provide

1

2

3

4

5

Figure 5.9: Screenshot of the BioCatNet FSPD-specific welcome page, as it can be seen
on https://teed.biocatnet.de for example. 1 The top navigation al-
lows the user to browse the database by different criteria, use BioCatNet
tools on the workbench (), register or log in as a contributor (), or per-
form a search (). 2 Below, the database name and version are stated,
3 as well as an short description of the BioCatNet and the respective

FSPD. 4 Further below, the curator of the FSPD and the related cita-
tions are presented. 5 At the far bottom, there are more links related to
the BioCatNet.

57

https://teed.biocatnet.de

5 Results

no description of the family groups but only a list of superfamilies and homologous
families contained in the respective group. (Figure 5.17 on page 63)

The protein view is opened when the user selects a protein from the homologous
proteins view or search results. Similar to the previously described detail views, the user
is presented with a short description, if available, some tasks, and a list of sequences
belonging to this protein. (Figure 5.18 on page 64)

The sequence view provides extensive details about a specific protein sequence.
Beside the actual amino acid sequence complete with sequence annotations extracted
from the primary source database, the user is provided with links to the host organism,
three dimensional structures, both documented and inferred, and documented func-
tions. If an EC number is provided, documentation from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) is fetched and displayed as inferred functional informa-
tion. (Figure 5.19 on page 65)

5.6.6 Alignment viewer - Jalview

Every super- and homologous family on the BioCatNet provides a set of files com-
posed of an pre-calculated multiple sequence alignment, a distance tree and a feature
file which can be used to visualize sequence annotations. These alignment files can be
either downloaded or visualized directly on the BioCatNet website using the Jalview
light MSA viewer applet. This applet needs the user to have an up-to-date Java in-
stallation enabled on his computer. In turn, it provides a simple and powerful way to
visualize multiple sequence alignments together with phylogenetic trees and sequence
annotations. On a modern workstation, alignments with more than 5000 sequences can

Figure 5.10: Screenshot of the BioCatNet BLAST search form as it can be seen when
selecting the search icon () from the top navigation on https://teed.
biocatnet.de. Providing a query sequence and a cutoff e-value, the user
can perform a BLAST search. The view of the results is described in
Figure Figure 5.31 on page 74.

58

https://teed.biocatnet.de
https://teed.biocatnet.de

5.6 BioCatNet website

be displayed without performance issues. (Figure 5.20 on page 66 and Figure 5.21 on
page 66)

5.6.7 Structure browser

The structure browser provides an overview over all experimentally determined three
dimensional structures known to the present FSPD. (Figure 5.22 on page 67) On this
page the structure entries are ordered by the protein sequences they belong to and their
superior hierarchies like proteins and homologous families.

The homology model view has not yet been fully implemented at the time of
this writing. Though there is no summary available yet which would present all gen-
erated homology models, single models can be reached using links on the sequence
detail views. The homology model presented in Figure 5.23 on page 68, for exam-
ple, is a model for sequence 147, and can be reached from the sequence detail page
https://teed.biocatnet.de/sequence/147 using the links provided under the head-
line inferred structures. On the homology model view, the three dimensional structure
is presented using the pv.js library. The user can choose from a number of visualiza-
tion options for the homology model as well as for the template structure. Below the
visualization, details of the target and template sequences are presented and various
homology model analyses results are available for download.

Figure 5.11: Screenshot of the BioCatNet quickjump form as it can be seen when se-
lecting the search icon () from the top navigation on https://teed.
biocatnet.de and choosing the quickjump link afterwards. Provided an
id of a specific sequence, protein, organism, etc., the user can quickly jump
to the respective details page.

59

https://teed.biocatnet.de/sequence/147
https://teed.biocatnet.de
https://teed.biocatnet.de

5 Results

Figure 5.12: Screenshot of the BioCatNet advanced search form as it can be seen when
selecting the search icon () from the top navigation on https://teed.
biocatnet.de and choosing the fams/prots/seqs link afterwards. Here,
the user can choose form a number of parameters to perform a refined
search for a specific entity in the BioCatNet.

1

Figure 5.13: Screenshot of the BioCatNet organism search form as it can be seen when
selecting the search icon () from the top navigation on https://teed.
biocatnet.de and choosing the taxonomy link afterwards. Here, the user
can search for an organism by name. Enabling the checkbox 1 filters
the results to only show organisms which are known to express a protein
present in this FSPD.

Figure 5.14: Screenshot of the BioCatNet sequence-organism combination search form
as it can be seen when selecting the search icon () from the top naviga-
tion on https://teed.biocatnet.de and choosing the sequence/organ-
ism link afterwards. Here, the user can search for sequences that match
the provided protein name as well as the provided organism name.

60

https://teed.biocatnet.de
https://teed.biocatnet.de
https://teed.biocatnet.de
https://teed.biocatnet.de
https://teed.biocatnet.de

5.6 BioCatNet website

1

2 3 4 5

6

7
8

9

10

Figure 5.15: Screenshot of the protein family overview page as it can be seen on
https://teed.biocatnet.de/sequence-browser. On this page, the
user is presented 1 a description of the protein family and several simpli-
fied statistics: 2 the number of homologous families in each superfamily,
3 the number of sequences in each superfamily, 4 the number of experi-

mentally determined structures in each superfamily and 5 the number of
organisms in each kingdom of life expressing an protein from this family.
10 Some common tasks can be performed by clicking the respective links

in the upper right corner of the overview. 6 The user can download the
list of superfamilies as a table and 8 open a filter row to filter the list
by different criteria. 7 A click on a column headline sorts the list by
the specified criteria. 9 A click on the alignment icon () opens the
Jalview MSA viewer, a click on the download button () allows the user
to download the MSA or other provided files.

61

https://teed.biocatnet.de/sequence-browser

5 Results

1

2 3 4 5

6

7
8

9

10

Figure 5.16: Screenshot of the superfamily details page as it can be seen on https:
//teed.biocatnet.de/sFam/1, for example. The details page for homol-
ogous families has the same structure. On these pages, the user is pre-
sented with 1 an description of the family and several simplified statistics:
2 the number of proteins in each homologous family, 3 the number of

sequences in each homologous family, 4 the number of experimentally
determined structures in each homologous family and 5 the number of
organisms in each kingdom of life expressing an protein from this family.
10 Some common tasks can be performed by clicking the respective links

in the upper right corner of the overview. 6 The user can download the
list of superfamilies as a table and 8 open a filter row to filter the list
by different criteria. 7 A click on a column headline sorts the list by
the specified criteria. 9 A click on the alignment icon () opens the
Jalview MSA viewer, a click on the download button () allows the user
to download the MSA or other provided files.

62

https://teed.biocatnet.de/sFam/1
https://teed.biocatnet.de/sFam/1

5.6 BioCatNet website

Figure 5.17: Screenshot of the homologous family groups details page as it can be seen
on https://teed.biocatnet.de/homologousfamilies/?h_fam_group_
id=2, for example. The structure basically corresponds to the list from
the superfamily and homologous family views. The page for superfamily
groups has the same structure.

63

https://teed.biocatnet.de/homologousfamilies/?h_fam_group_id=2
https://teed.biocatnet.de/homologousfamilies/?h_fam_group_id=2

5 Results

1

2

3

4

5 6 7 89

Figure 5.18: Screenshot of the protein details page as it can be seen on https:
//teed.biocatnet.de/protein/30, for example. On this page, the user
is presented with 1 an description of the protein, if available and 3 tasks
the user can perform with this protein. If an EC number is defined for this
protein, the user can choose to look up more information on BRENDA or
get an list of all proteins with this EC known to the current FSPD. 2
A small statistic about the lengths of sequences belonging to this protein
is displayed, too. 4 The breadcrumbs at the top describe the families
this protein belongs to. The sequences belonging to the displayed pro-
tein are listed below. Here, the user can see 5 the sequence name, 6
length, 7 the source organism and 8 has the possibility to look up the
primary information on the source database. 9 In the data column the
user has direct access to the amino acid sequence in FASTA format and
the reference sequence of this protein is marked with a star ().

64

https://teed.biocatnet.de/protein/30
https://teed.biocatnet.de/protein/30

5.6 BioCatNet website

1 2

3

4 5

6

Figure 5.19: Screenshot of the sequence details page as it can be seen on https:
//teed.biocatnet.de/sequence/45, for example. 1 As with the other
details pages, the user is presented with a short summary. A star ()
marks a sequence as being the primary reference sequence for the protein.
2 To the right, the user can choose to copy the amino acid sequence to

the clipboard or download the corresponding FASTA file. If an EC num-
ber is given for the protein, links to other enzyme databases with more
information on the respective EC number are provided. Also, links to the
primary source database entries are provided. 3 The amino acid sequence
is displayed, colored by available annotation data. Hovering over an amino
acid of the sequence will present a small popup with the position and, if
available, standard position of the respective amino acid, as well as poten-
tial annotation information. 4 The source organisms are displayed below
the amino acid sequence together with 5 links to the primary database
entry. 6 Below, documented and inferred structures and functions are
presented, with links to pages containing more information.

65

https://teed.biocatnet.de/sequence/45
https://teed.biocatnet.de/sequence/45

5 Results

Figure 5.20: Example of an MSA visualization with Jalview. The displayed alignment
is an MSA for superfamily 3 of the TEED FSPD.

Figure 5.21: Example of an MSA phylogenetic tree visualization with Jalview. The
tree displayed portrays the sequence distances between members of
homologous family 4 of the TEED FSPD.

66

5.6 BioCatNet website

Figure 5.22: Screenshot of the structure browser as it can be see on https://teed.
biocatnet.de/structure-browser. The structure entries are ordered
by superfamily, homologous family, protein, sequence and host organism.

67

https://teed.biocatnet.de/structure-browser
https://teed.biocatnet.de/structure-browser

5 Results

1 2

3 4

5

6

Figure 5.23: Screenshot of the homology model viewer as it can be seen on https:
//teed.biocatnet.de/modelMonomer/8556. 1 At the very top, the ho-
mology model is visualized. 2 By default, the model template is not
shown, but it can be visualized using 3 the switches at the bottom of
the visualization. There, the user can also choose from a number of visu-
alization and coloring options. In this example, the template is visualized
using sticks and the model is represented by tubes. 4 A click on the
picture icon () at the lower right allows the user to save a snapshot of
the current view. 5 Further to the right, the user can choose to download
the structure files of the homology model, its template or an package con-
taining all structure files and analyses related to this homology model. 6
Below the visualization, links related to the target and template sequences
are presented as well as information and results on the performed model
analyses.

68

https://teed.biocatnet.de/modelMonomer/8556
https://teed.biocatnet.de/modelMonomer/8556

5.6 BioCatNet website

5.6.8 Functions browser

The functions browser shall presents protein functions connected to unambiguous amino
acid sequence entries, the relations of which have been discussed in detail in section 5.1
on page 37.

An overview of all reactions which have been posted to the BioCatNet is displayed
when the user chooses the Functions tab from the topmost menu. Reactions will be
listed here with their name and with their reaction formula. (Figure 5.24 on page 69)

The reaction details view will additionally depict the reaction, using the Indigo
library, and list any experiments known to the present FSPD where this reaction has
been examined. (Figure 5.25 on page 69)

The chemical compound view finally displays details about a chemical compound
found in a reaction. It lists alternative names, shows a computed molecular mass and
provides the possibility to download the structure of the compound. (Figure 5.26 on
page 70)

Figure 5.24: Screenshot of the functions browser as it can be seen on https://teed.
biocatnet.de/function-browser. The view lists all reactions that have
been posted to the BioCatNet with their names and reaction formulas.

Figure 5.25: Screenshot of a reaction details view as it can be seen on https://teed.
biocatnet.de/reaction/2.

69

https://teed.biocatnet.de/function-browser
https://teed.biocatnet.de/function-browser
https://teed.biocatnet.de/reaction/2
https://teed.biocatnet.de/reaction/2

5 Results

5.6.9 Taxonomy browser

When the user clicks on a linked organism name on any BioCatNet page, he will be
presented with the taxonomy details view for the clicked organism. The taxonomy
tab in the uppermost navigation, takes the user to the taxonomy details view for the
taxonomic root node. This detail view displays the requested organism, its lineage and
its sibling and child nodes in a tree view. Furthermore, it lists all sequences which are
known to originate from this taxonomic node, and hints to the number of sequences
each of the sibling, child and parent nodes contribute to the FSPD.

5.6.10 Workbench

As the name implies, the Workbench is the place BioCatNet users can make use of
the tools they are provided with and contribute to the database by posting experiment
data. The workbench provides different tools depending whether the user is a first-time
visitor, a registered collaborator or even an database curator. (Figure 5.28 on page 72)

The workbench stash provides a way for users to collect frequently used entities,
and store them like bookmarks or favorites on various other software and websites.

The workbench cache on the other hand automatically stores unfinished user pro-
cesses. When, for example, a user looses his internet connection or accidentally closes

Figure 5.26: Screenshot of a compound details view as it can be seen on https://
teed.biocatnet.de/compound/77. The view presents alternative names
as well as the computed molar mass for the current compound and depicts
the chemical structure as well as the SMILES code.

70

https://teed.biocatnet.de/compound/77
https://teed.biocatnet.de/compound/77

5.6 BioCatNet website

1

2

3

4

5

Figure 5.27: Screenshot of a taxonomy detail view of the phylum Firmicutes, as it can
be seen on https://teed.biocatnet.de/taxNode/1239. 1 Alternative
names are shown dimmed below the primary and most widely recognizable
name of the shown taxonomic node. Below that, the lineage is listed, 2
always starting at the root node. Each backslash (\) symbolizes a step
down the hierarchy from cellular organisms to the superkingdom Bacteria,
to the phyli of the latter. 3 Each pipe (|) symbolizes that the hier-
archy stays on the same level, and thus marks taxonomic sibling nodes.
In this case, the whole list starting from Cyanobacteria and ending with
Firmicutes are sibling nodes, with the currently viewed taxonomic node
Firmicutes marked bold. 4 The next backslash (\) marks another step
down the hierarchy and thus the child nodes of the phylum Firmicutes.
5 Each Node is followed by three links: the question mark (?) opens a

small dialog showing synonyms, the next link takes the user to the NCBI
taxonomy page, and lastly, the two numbers denote the number of se-
quences that the corresponding node and all its child nodes contribute to
the FSPD. 71

https://teed.biocatnet.de/taxNode/1239

5 Results

the browser while creating a new experiment data set, he can pick up where he left
after reopening BioCatNet and choosing the unfinished process from the workbench
cache.

1

2

3

4

Figure 5.28: Screenshot of the BioCatNet workbench. This figure shows the workbench
desktop screen for an administrator with the highest privileges. First-time
visitors are presented with a short note encouraging them to register, reg-
istered users will see a desktop page much like the one shown above. 1
Unregistered users can only choose the tools BLAST and Standard Num-
bering. 2 Registered users additionally can post experiment data and
sequence information. 3 Database curators and administrators are pre-
sented with a number of advanced housekeeping tools. 4 The workbench
desktop harbors the stash and the cache.

Tools available for all users

The BLAST tool is available to every user and works the same way as the BLAST
search available in the search forms (Figure 5.29 on page 73). Once the BLAST request
is submitted, a job status page is presented, indicating whether the request has been
submitted successfully or if it has been rejected (Figure 5.30 on page 74). The user can
safely navigate away from the status page and return later, the page will automatically
track the job status and display the results as soon as they are available, without the

72

5.6 BioCatNet website

need to refresh the status page (Figure 5.31 on page 74). The results will be available
under the same address for an yet to be defined amount of time.

The Standard Numbering Tool provides users with the possibility to apply a
standard numbering scheme on a query sequence, as it has been described in section 2.3
on page 7. (Figure 5.32 on page 75) Similar to the process described for the BLAST
tool, the user will be presented a status page after the query has been submitted, where
the results will be displayed as soon as they are available. (Figure 5.33 on page 76)

Figure 5.29: Screenshot of the BioCatNet Workbench BLAST tool.

73

5 Results

Figure 5.30: Screenshot of the BioCatNet BLAST status page while waiting for results.

1
2

Figure 5.31: Screenshot of the BioCatNet BLAST status page with results. 1 A click
on a header in the result table will sort the results by that respective
column. 2 The user has also the ability to filter and download the results,
and to expand the table to display all columns returned by BLAST .

74

5.6 BioCatNet website

Figure 5.32: Screenshot of the BioCatNet standard numbering tool, where the user
posts a query sequence to be aligned with the reference sequence.

75

5 Results

Figure 5.33: Screenshot of the BioCatNet standard numbering result page. Functionally
and structurally relevant annotations are highlighted with colors. Hovering
the cursor over an amino acid reveals its native position number and the
standard position number it has been assigned by the standard numbering
scheme.

76

5.6 BioCatNet website

Tools for registered users

Registered users have additional views to choose from when visiting the workbench,
one for each entity they will be able to post to the BioCatNet. At the moment these are
limited to EXPERIMENT_SETS, EXPERIMENTS and SEQUENCES. These pages are similarly
structured, giving an overview of entities the user has created, and the ones that are
being shared with him by other contributors, and the opportunity to create and post
novel entities. The experiments view additionally lists uncompleted entries from the
cache. (Figure 5.34 on page 77)

Figure 5.34: Screenshot of the BioCatNet experiments overview page. At the top right,
the user has the possibility to create a new experiment. Below that,
EXPERIMENT entities are shown which are unfinished, owned by the user
and shared with the user.

77

5 Results

The creation of an experiment set is a simple process, only requiring an descrip-
tive name for the set. (Figure 5.35 on page 78)

Figure 5.35: Screenshot of the BioCatNet workbench experiment set creation form. To
create a new experiment set the user only needs to provide a descriptive
name.

To insert a novel sequence into the FSPD, the user starts with providing the one
unambiguous protein description: its amino acid sequence (Figure 5.36 on page 78).
The sequence is then compared against the present sequence database using BLAST to
find the proper protein, homologous family or superfamily to assign the new sequence
to. The user then proceeds to complete missing categorization information as well as
the source organism(s) (Figure 5.37 on page 79). If an identical sequence has been
found in the database, on the other hand, the user can only choose to add the sequence
to his stash. (section 5.6.10 on page 77)

Figure 5.36: Screenshot of the first step of the sequence creation form. Here, the user
starts by providing the unambiguous amino acid sequence. On submission,
a BLAST search is performed against the sequence database to find related
proteins that may already be present in the FSPD.

78

5.6 BioCatNet website

1

2

3

4

Figure 5.37: Screenshot of the second step of the sequence creation form. Here, the user
is presented with the result of the sequence check. In this example, the
provided sequence could not be assigned to a known protein, 1 but was
found to be part of the homologous family 1 POX. The user now needs
to provide 2 a descriptive sequence and 3 protein name, 4 as well as
one or multiple source organisms.

Creating experiments is a slightly more elaborate process guided by multiple
forms, and starts with the selection of the EXPERIMENT_SET it will belong to and an
descriptive name (Figure 5.38 on page 80). The user can choose one of his previously
defined experiment sets, or create a new one by simply choosing a unique name. Then
he proceeds to define the reaction type and conditions, the amount of enzyme, sub-
strates and additives he used, and the products he observed (Figure 5.39 on page 81 to
Figure 5.43 on page 85). Often the user will encounter drop-down menus next to the
form fields, indicated by downward facing carets (). Other fields will have buttons
carrying a plus sign (+), indicating that the user is supposed to create new entities if he
cannot find what he is looking for in the drop-down menu. A click on these buttons will
unveil small forms, where the user can define a new reaction type, buffer or compound,
for example (Figure 5.45 on page 87 to Figure 5.46 on page 87).

79

5 Results

1

2

3

4

Figure 5.38: Screenshot of the first step in the creation of a new experiment entity. 1
To the left, an overview of the forms involved in the creation of the exper-
iment are presented as links and the user can jump between the forms at
any given time, though some forms need the previous form to be complete
to be visible. In the first form, the user needs to choose 2 an experiment
set and 3 an experiment name. 4 Using the drop-down toggle (), the
user can choose from a list of his previously defined experiment sets, or
simply fill in a new name to create a new EXPERIMENT_SET.

80

5.6 BioCatNet website

1

2

3

4

5

5

5

Figure 5.39: Screenshot of the second step second step in the experiment creation form.
Here, the user must choose 1 the reaction he is observing, in terms of
supposed substrates and products, and 2 various reaction conditions. 3
Additional information about the reaction set up can be provided using
the text form field, 4 ambient temperature and pressure can be filled
in using a shortcut. 5 Using the drop-down toggles (), he can choose
the reaction type and used buffer from a list of already defined entities.
Similarly, he can choose a volume unit from a drop-down list. In case the
needed reaction or buffer are not already defined, the user can open smaller
forms using the ’add’ buttons next to the form fields (+). (Figure 5.45 on
page 87 and Figure 5.46 on page 87)

81

5 Results

1

2

3

3

3

Figure 5.40: Screenshot of the third step in the experiment creation form. Here, the
user must choose 1 at least one enzyme he used in the reaction as well as
2 at least one feed instance, i.e. combination of feed time, feed amount,

the volume of added solvent, if any, and the method used to prepare the
enzyme. Using the shortcuts add/remove enzyme and add/remove feed,
he can control the number of form elements and thus the number of en-
zymes and feed instances. 3 Using the drop-down toggles (), the user
can choose from a list of enzymes, preparation methods and time/amoun-
t/volume units. While the list of preparation methods and units is com-
mon to all users, the list of sequences is particular to the user and reflects
the users stash of sequences (section 5.6.10 on page 77). Using the ’add’
buttons (+), the user can add new enzymes to his stash and create novel
buffer entries, which he than can use to fill the form.

82

5.6 BioCatNet website

1

2 3

Figure 5.41: Screenshot of the fourth step in the experiment creation form. Here, the
user must declare which substrates were added to the reaction. 1 The
substrates are pre-selected based on the reaction the user chose on the
second form ’Reaction and Conditions’. 2 Using the hyperlinks ’add
feed’ and ’remove feed’, he can control the number of feed instances. 3
Each feed instance consists of a feed time, feed amount and feed volume as
well as a description of the method – or supplier – by which the substrate
was acquired. In the case that a user has not used a substrate suggested
by the reaction, he can simply remove all feed instances and thus mark
the substrate as not used.

83

5 Results

1

2

3 4

Figure 5.42: Screenshot of the fifth step in the experiment creation form. Here, the
user has the chance to define additives he used in the experiment, i.e.
compounds which do not primarily partake in the described reaction, but
may be affecting the reaction in other ways. Initially, there are no form
fields. 1 The user must use the button ’add additive’ to spawn form fields
where he can choose 2 a chemical compound and 3 define one or more
feed instances using the buttons ’add feed’ and ’remove feed’. 4 Each
feed instance is defined by a feed time, amount and volume.

84

5.6 BioCatNet website

1

1

2

3

Figure 5.43: Screenshot of the sixth step in the experiment creation form. Here, the
user can define which products have been measured. 1 The products de-
fined by the observed reaction are pre-selected, 2 additionally observed
byproducts can be defined using the ’add byproduct’ button. 3 Each
observation consists of an observation time, concentration and the obser-
vation method.

85

5 Results

1

2

Figure 5.44: Screenshot of the last step in the experiment creation form. Here, the user
has a chance to review his entries. 1 Using the navigation on the left or
the 2 pencil icons () next to the headlines, the user can jump to any of
the previous forms to make some changes. After confirming this review,
the experiment entry will finally be written to the database, and the user
will be redirected to the experiment details view of the result.

86

5.6 BioCatNet website

1

2

Figure 5.45: Screenshot of the hovering reaction creation form, triggered by using the
’add reaction’ button in the second step of the experiment creation form.
(Figure 5.39 on page 81) Here, the user can define a new reaction that he
has observed. For this, he must provide 1 a short description, and 2 one
or more substrates and products complete with stoichiometric coefficients.

Figure 5.46: Screenshot of the hovering buffer creation form. A short name and detailed
description suffice in the creation of new buffer entities.

87

5 Results

Figure 5.47: Screenshot of the hovering compound creation form. When creating a
new compound, the user must provide at least one name and a SMILES
code. Next to the SMILES form field, a pencil button () triggers the
extension of the form to show an canvas for chemical drawings (provided
with Ketcher , [65]). Changes to the drawing will be immediately reflected
in the SMILES form field and vice versa.

88

5.7 Use cases

5.7 Use cases

Several FSPDs are already up and running atop the BioCatNet, two of which have
been published recently. Other FSPDs, centering around Cytrochrome P450, lipases,
laccases and multicopper oxidases, transaldolases, hydratases, short-chain dehydroge-
nases/reductases and various other protein families, are currently being updated to use
the new platform.

5.7.1 Analysis of thiamine diphosphate-dependent enzymes

Thiamine diphosphate (ThDP)-dependent enzymes form a diverse protein family present
in all kingdoms of life. Their ability to catalyze a broad range of reactions makes
them promising candidate for biocatalysis. To provide a comprehensive database for
a systematic sequence and structure analysis, the Thiamine diphosphate-dependent
Enzyme Engineering Database (TEED) was updated using the DBParse toolbox [68]
and the FSPD platform BioCatNet. Based on 51 seed sequences, representatives taken
from previous versions of the TEED, 77,493 sequences of 52,565 proteins and 240
crystal structures were found and fed into the updated TEED. The proteins were
grouped into 168 homologous families, and the 168 homologous families were clas-
sified into 9 superfamilies. [69] The updated version of the TEED is available at
http://teed.biocatnet.de.

5.7.2 Analysis of imine reductases

Research revolving around imine-reducing enzymes is still in its infancy, but because
of their exquisite selectivities, they are a promising reagent for the generation of chi-
ral compounds for the fine-chemical industry. Using two imine reductases described
only recently as seed sequences, the DBParse toolbox [68] found just under 449 se-
quences of 398 proteins which were then classified into 13 homologous families and 9
superfamilies. Combining this database and current knowledge on imine reductases,
three novel enzymes were identified which exhibited comparable to higher catalytic ef-
ficiencies as compared to previously described enzymes. [61] The IRED is available at
http://ired.biocatnet.de.

89

http://teed.biocatnet.de
http://ired.biocatnet.de

6 Discussion

More than ten years of experience with family-specific protein databases (FSPDs) such
as the Lipase Engineering Database (LED) or Thiamine diphosphate-dependent En-
zyme Engineering Database (TEED) have shown that a wide variety of questions can
be answered when protein-related data from different sources can be flexibly combined.
FSPDs center around multiple sequence alignments (MSAs) containing all available
sequences from an entire protein family. The platform containing the protein database
and the software to collect and process data to populate it, developed at the Institute
of Technical Biochemistry (ITB), has since been known as the Data Warehouse system
for protein Families (DWARF).

With the BioCatNet, we have successfully overhauled the DWARF. Taking into account
recent developments and best practices in web-application architecture, we have come
up with an improved FSPD system which is better performing, easier to use and easier
to extend. At the same time, BioCatNet already surpasses DWARF’s capabilities,
the major point being the ability to store details of biochemical functionality and
link it unambiguously to one specific amino-acid sequence. Thus, BioCatNet now
effectively brings together protein sequence, structure and functional information in
one database.

Many choices made during the development of the BioCatNet reflect the developers’
objective to keep the system modular and extensible. Fundamental application de-
velopment principles like encapsulation, dependency injection and the MVC-pattern
have been applied throughout the BioCatNet back end code base to facilitate future
development and expansion of the back end system (see section 5.2 on page 42). The
core of BioCatNet now consists of an API providing access to the underlying database
(see section 5.5 on page 50). This decision allowed to build modular, loosely-coupled
services and the GUI. Moreover, the API provides skilled users with a direct access
to the BioCatNet data, ready to be consumed by services and tools written by them-
selves or third-party software. The choice to use popular and well-documented front
end libraries like jQuery [35] and Twitter Bootstrap [10] as well as the creation of spe-
cialized libraries (see section 5.3 on page 47) will ease further development of the GUI.
Especially the front end framework Twitter Bootstrap allowed to emphasize on a truly
intuitive and fluid user interface (see section 4.4.4 on page 35). The resulting layout
adapts to the screen size and output medium, resulting clean print-outs as well as in
an pleasant experience even on handheld devices.

The main objective of the BioCatNet platform is to enable the systematic analysis of
biochemical properties and functions of proteins and therefore to aid in the discovery
and development of novel biocatalysts as well as the engineering and enhancement of

91

6 Discussion

established ones. BioCatNet is by far not the first approach undertaken to try and allow
an systematic analysis of enzymes. Protein databases like BRENDA/KENDA, [60, 36]
PANTHER [43] and UniProtKb [12] are only a few of a large number of services that
provide the scientific community with information about protein sequence, structure
and function while initiatives like biosharing [59], Standards for Reporting Enzymology
Data (STRENDA) [2, 67] and bioDBcore [4] provide standards and best practices to
acquire, store and share this information.

In contrast to holistic protein databases like BRENDA [60] or the PDB [6], BioCat-
Net pursuits an approach focused on protein families. Inherited from the preceding
DWARF, this approach allows the BioCatNet developers to focus on a smaller set
of questions and problems, as the size of the target group is much smaller. On the
other hand, throughout the scientific community different standards are conceived and
worked upon in smaller groups with similar interests first, and they are only presented
to the broader community once they have matured. Aiming to serve smaller, focused
scientific groups, BioCatNet will be part of the standardization process early on and
will help proliferation and discussion as a central repository for biochemical informa-
tion of this group. In time, BioCatNet will be adapted to accommodate more different
protein families and with each adaption the number of functions and capabilities of
BioCatNet will grow. At the same time, it will help improve on standards and cross-
introduce them between the different focus groups. BioCatNet thereby also offers a
central repository for information revolving around a specific protein family, partly ex-
tracting data from other databases (like NCBI or PDB) and partly linking them to our
records (like KEGG, [47]). In future, the number of source databases for the BioCatNet
will grow as its functionality will be extended to include more protein families as well as
information about, for example, the success of different expression systems or genetic
data.

Despite the wealth of information offered by countless established and mature pro-
tein databases, scientists struggle with the simple question "What happens to protein
X’s function if I change the amino acid A on position Y to B?". There are cases in
which other laboratories have asked the exact same question, conducted experiments
and published the results. Even in these cases, finding an definite answer can turn
out to be quite difficult. After the initial struggle of finding the appropriate literature,
comparability of the data is an enormous issue to deal with. Though the questions
might sound the same at first, every laboratory focuses on a different aspect of the
experiment. Therefore, often careful study of experimental setups and conditions is
needed to assess the relevance of each publication. Expression systems, buffer compo-
sition and temperature are only a few parameters which can influence the outcome of
a biochemical assay immensely. Differing experiment parameters and functional data
is not even the real problem, but rather the effort one has to spend to extract this
information from numerous publications revolving around the question at hand.

To ease this task, BioCatNet stores raw experiment data. The BioCatNet database is
designed to hold information about experimental setups, conditions, substrates, prod-
ucts and additives and, most importantly, an unambiguously defined amino acid se-
quence of the protein in question. The database scheme is laid out in a fashion that

92

ensures consistent and comparable datasets and largely complies to the guidelines sug-
gested by the STRENDA initiative. [67] With consistent and conforming data, compa-
rability becomes much easier and researchers can focus on single parameters. Conclu-
sions about the effect of the temperature on a biochemical assay can be assessed with
much more confidence when all other parameters are asserted to be equal. Thus, sci-
entist will be able to construct detailed models of biochemical experiments with much
more confidence. Better models in turn will yield more accurate hypotheses, accelerat-
ing the cycle of the scientific method - model, predict, experiment, observe and model
again.

While most protein databases listed above solely rely on text-mining and expert cura-
tion, BioCatNet has chosen a more user-centered approach to the acquisition of exper-
imental data. While it has been proven to be quite successful in extracting relevant
data from scientific publications, text-mining involves an extraordinary effort and is
still far from being the perfect solution. The BRENDA is an exemplary database with
biochemical information collected by text-mining and groomed by experts. Still, mis-
categorizations and entries of poor quality are found quite often. Therefore, from its
conception, BioCatNet was designed to rely on raw experiment data provided by bench
scientists.

This design goal has been achieved with the creation of the BioCatNet Workbench,
a set of web pages revolving around user-contributed data (see subsection 5.6.10 on
page 70). Here, contributors can use the provided forms to create and post new entries
concerning protein sequences and experiment parameters and results. Minimal, clearly
structured forms provide a simple to use, yet powerful interface. Many form elements
provide predictive capabilities, known from various search engines, while other form
elements are filled based on user’s previous choices or on the context he is working in.
We know that nobody really likes the exhaustive repetitive task of filling out forms,
which is why we focused on simplifying this task as much as possible without sacrificing
data accuracy and integrity or imposing impractical standards on our contributors.

Here, it’s worth to point out that contributing to the BioCatNet is not automatically
publishing. The user will be in full control of his data at all times. BioCatNet provides
an user and group management system which allows all contributors to specify who
can read and who can edit their data, based on single users or whole groups. This does
not only apply to experimental setups and results, but to every entry they contribute.
That way, scientists can make use of the intricate data model and the growing number
of tools the BioCatNet will be providing to conduct their research ’in private’, releasing
the data only after the publication of a scientific paper, for example.

More than ten papers (with more than 200 citations) and ten databases published in the
last decade by the ITB alone prove that family-specific protein databases are beneficial
to the scientific community and are indeed accelerating research. And this is true
for the FSPDs build atop DWARF. With the BioCatNet as the DWARF’s successor,
presenting a platform that is more user-friendly, is more robust, has more functions
and is overall more mature, we predict that the contribution of FSPDs build atop the
BioCatNet will boost scientific endeavors even more and contribute to the improvement
of established and the discovery of novel biocatalysts.

93

7 Outlook

What started out as an upgrade to the DWARF to allow the inclusion of functional
information, turned out to be an major overhaul and rejuvenation, complete with a
new name: BioCatNet. Though much has been done as of this writing, there is still
much to be drawn on the potential which BioCatNet presents.

For one, many more services and functionalities can be implemented using the estab-
lished modular system of the BioCatNet. On the other hand, FSPDs established on
the DWARF need to be ported to the new system and information for other protein
families needs to be gathered to create novel FSPDs. For this to succeed, the number of
core developers must increase, to split the burden of development and maintenance.

To improve the user experience, BioCatNet needs to exchange its multiple sequence
alignment (MSA) viewer in favor of an implementation which does not depend on Java
browser plugins. Also, BioCatNet may choose to display three-dimensional protein
structures directly, instead of referring the user to the Protein Data Bank. That this
is perfectly feasible, is shown with the display of three-dimensional homology models.
Ideas have been developed for the BioCatNet to support commenting and collaboration
on experimental setups in the future. In general, BioCatNet can implement more ideas
revolving around functional parameters and data, i.e. experimental setups and results,
though it is hard to predict what features will be feasible and useful.

Therefore, the most crucial aspect of BioCatNet’s future is collaboration. The data
model is well defined and the user interface has underwent first tests. Now we need to
populate the database with experimental data, collect and process feedback, exchange
ideas and see what conclusions can be drawn, what services are missing and which
direction BioCatNet shall take in the future.

95

Acknowledgements

First I want to thank Prof. Dr. Jürgen Pleiss and Prof. Dr. Bernhard Hauer for
giving me the opportunity to work on such an interesting topic, especially since the
development of software and web applications is not yet a core interest at the ITB.

Special gratitude I have to express to my supervisor Constantin Vogel. Through
many discussions he has helped me understand the science community, educated me in
database design, led the way during development and has kept me from going astray
with my work many times. Especially I have to thank him for his patience, which gave
me the opportunity to explore novel methods and experiment with new features.

I want to thank Sivlia Racolta for testing the BioCatNet since its very early stages
and providing helpful feedback as well as bearing with me when I broke the system for
a day. I thank Silvia, Constantin, Lukasz Griczman and Sven Benson for providing
me with an insight into the scientific community and for their support in questions
concerning proteins and computational biology alike.

I also acknowledge contributions of the FOR1296 research group, which helped to shape
the concept behind BioCatNet. Especially Martina Pohl and Dörte Rother helped a
great deal formulating the minimal set of information needed to describe an biochemical
experiment. Further, I thank Anna Baier, Saskia Bock, Robert Westphal and Martina
Pohl for their contributions and ideas to the shape of the user interface.

I am grateful to the whole Institute of Technical Biochemistry for having me and
providing a professional and supportive atmosphere.

97

References

[1] S.F. Altschul et al. “Basic Local Alignment Search Tool”. In: J. Mol. Biol. (1990),
pp. 403–410. issn: 0022-2836. doi: 10.1016/S0022-2836(05)80360-2.

[2] Rolf Apweiler et al. A large-scale protein-function database. 2010. doi: 10.1038/
nchembio.460.

[3] Elaine Ashton. Perl Timeline. 2001. url: http://history.perl.org/PerlTimeline.
html (visited on 09/18/2014).

[4] Alex Bateman. “Curators of the world unite: The International Society of Biocu-
ration”. In: Bioinformatics 26 (2010), p. 991. issn: 13674803. doi: 10.1093/
bioinformatics/btq101.

[5] Beginner’s Introduction to Perl. Oct. 2000. url: http://www.perl.com/pub/a/
2000/10/begperl1.html (visited on 09/18/2014).

[6] H M Berman et al. “The Protein Data Bank.” In: Nucleic acids research 28 (2000),
pp. 235–242. issn: 0305-1048. doi: 10.1093/nar/28.1.235.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. 2005. url: http://tools.ietf.org/html/rfc3986 (visited on
08/31/2014).

[8] Marco Biasini. PV - JavaScript Protein Viewer. 2014. url: http://biasmv.
github.io/pv/ (visited on 11/12/2014).

[9] Marco Biasini. “PV - WebGL-based protein viewer”. In: (Nov. 2014). doi: {10.
5281/zenodo.12620}. url: %7Bhttp://dx.doi.org/10.5281/zenodo.12620%
7D.

[10] Bootstrap. 2014. url: http://getbootstrap.com (visited on 10/21/2014).
[11] U T Bornscheuer et al. “Engineering the third wave of biocatalysis.” In: Nature

485.7397 (May 2012), pp. 185–94. issn: 1476-4687. doi: 10.1038/nature11117.
url: http://www.readcube.com/articles/10.1038/nature11117?utm%5C_
campaign=readcube%5C_access%5C&utm%5C_source=nature.com%5C&utm%5C_
medium=purchase%5C_option%5C&utm%5C_content=thumb%5C_version.

[12] Emmanuel Boutet et al. “UniProtKB/Swiss-Prot.” In: Methods in molecular bi-
ology (Clifton, N.J.) 406 (2007), pp. 89–112. issn: 1064-3745.

[13] Carsten Brandt. Markdown php renderer. 2014. url: https://github.com/
cebe/markdown (visited on 09/18/2014).

[14] Johnny Broadway. analog. 2014. url: https://github.com/jbroadway/analog
(visited on 09/18/2014).

99

http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1038/nchembio.460
http://dx.doi.org/10.1038/nchembio.460
http://history.perl.org/PerlTimeline.html
http://history.perl.org/PerlTimeline.html
http://dx.doi.org/10.1093/bioinformatics/btq101
http://dx.doi.org/10.1093/bioinformatics/btq101
http://www.perl.com/pub/a/2000/10/begperl1.html
http://www.perl.com/pub/a/2000/10/begperl1.html
http://dx.doi.org/10.1093/nar/28.1.235
http://tools.ietf.org/html/rfc3986
http://biasmv.github.io/pv/
http://biasmv.github.io/pv/
http://dx.doi.org/{10.5281/zenodo.12620}
http://dx.doi.org/{10.5281/zenodo.12620}
%7Bhttp://dx.doi.org/10.5281/zenodo.12620%7D
%7Bhttp://dx.doi.org/10.5281/zenodo.12620%7D
http://getbootstrap.com
http://dx.doi.org/10.1038/nature11117
http://www.readcube.com/articles/10.1038/nature11117?utm%5C_campaign=readcube%5C_access%5C&utm%5C_source=nature.com%5C&utm%5C_medium=purchase%5C_option%5C&utm%5C_content=thumb%5C_version
http://www.readcube.com/articles/10.1038/nature11117?utm%5C_campaign=readcube%5C_access%5C&utm%5C_source=nature.com%5C&utm%5C_medium=purchase%5C_option%5C&utm%5C_content=thumb%5C_version
http://www.readcube.com/articles/10.1038/nature11117?utm%5C_campaign=readcube%5C_access%5C&utm%5C_source=nature.com%5C&utm%5C_medium=purchase%5C_option%5C&utm%5C_content=thumb%5C_version
https://github.com/cebe/markdown
https://github.com/cebe/markdown
https://github.com/jbroadway/analog

References

[15] Christiam Camacho et al. “BLAST+: architecture and applications.” In: BMC
bioinformatics 10 (2009), p. 421. issn: 1471-2105. doi: 10.1186/1471-2105-10-
421.

[16] Scott Chacon. Pro Git. Berkeley, CA: Apress, 2009, pp. 1–210. isbn: 978-1-4302-1833-3.
doi: 10.1007/978-1-4302-1834-0. url: http://gitbookio.gitbooks.io/
progit/content/en/index.html.

[17] CLUSTAL-OMEGA. 2014. url: http : / / www . clustal . org / omega / README
(visited on 10/28/2014).

[18] Composer Documentation. 2014. url: OBhttps://getcomposer.org (visited on
09/15/2014).

[19] Comprehensive Perl Archive Network. 2014. url: http://www.cpan.org (visited
on 09/15/2014).

[20] DB-Engines Ranking. 2014. url: http://db-engines.com/en/ranking (visited
on 10/01/2014).

[21] Hannah Dienhart. “Bachelors Thesis: DBUpdate - a tool to update family specific
protein databases implemented in the BioCatNet system”. University of Stuttgart,
2014.

[22] Vincent Driessen. A successful git branching model. 2010. url: http://nvie.
com/posts/a-successful-git-branching-model/ (visited on 09/16/2014).

[23] ECMAScript Language Specification. 2011. url: http://www.ecma-international.
org/publications/files/ECMA-ST/Ecma-262.pdf (visited on 09/18/2014).

[24] K Engelmark Cassimjee et al. “A general protein purification and immobilization
method on controlled porosity glass: biocatalytic applications.” en. In: Chemi-
cal communications (Cambridge, England) 50.65 (Aug. 2014), pp. 9134–7. issn:
1364-548X. doi: 10 . 1039 / c4cc02605e. url: http : / / pubs . rsc . org / en /
content/articlehtml/2014/cc/c4cc02605e.

[25] Anthony Farrara. password-compat. 2014. url: https://github.com/ircmaxell/
password_compat (visited on 09/18/2014).

[26] Markus Fischer and Jürgen Pleiss. “The Lipase Engineering Database: a naviga-
tion and analysis tool for protein families.” In: Nucleic acids research 31.1 (Jan.
2003), pp. 319–21. issn: 1362-4962. url: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=165462%5C&tool=pmcentrez%5C&rendertype=
abstract.

[27] Markus Fischer et al. “DWARF–a data warehouse system for analyzing protein
families”. In: BMC bioinformatics 7.1 (2006), p. 495.

[28] Markus Fischer et al. “The cytochrome P450 engineering database: A navigation
and prediction tool for the cytochrome P450 protein family”. In: Bioinformatics 23
(2007), pp. 2015–2017. issn: 13674803. doi: 10.1093/bioinformatics/btm268.

100

http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1007/978-1-4302-1834-0
http://gitbookio.gitbooks.io/progit/content/en/index.html
http://gitbookio.gitbooks.io/progit/content/en/index.html
http://www.clustal.org/omega/README
OBhttps://getcomposer.org
http://www.cpan.org
http://db-engines.com/en/ranking
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://dx.doi.org/10.1039/c4cc02605e
http://pubs.rsc.org/en/content/articlehtml/2014/cc/c4cc02605e
http://pubs.rsc.org/en/content/articlehtml/2014/cc/c4cc02605e
https://github.com/ircmaxell/password_compat
https://github.com/ircmaxell/password_compat
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=165462%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=165462%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=165462%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1093/bioinformatics/btm268

References

[29] M Galleni et al. “Standard numbering scheme for class B beta-lactamases.” In: An-
timicrobial agents and chemotherapy 45.3 (Mar. 2001), pp. 660–3. issn: 0066-4804.
doi: 10.1128/AAC.45.3.660-663.2001. url: http://www.pubmedcentral.
nih . gov / articlerender . fcgi ? artid = 90352 % 5C & tool = pmcentrez % 5C &
rendertype=abstract.

[30] R.L. Glass. Facts and Fallacies of Software Engineering. Agile Software Devel-
opment. Pearson Education, 2002. isbn: 9780321630094. url: http://books.
google.de/books?id=lvTrvhZa1rEC.

[31] Growth of GenBank and WGS. 2014. url: http://www.ncbi.nlm.nih.gov/
genbank/statistics (visited on 10/15/2014).

[32] Justin Hileman. Mustache.php. 2014. url: https://github.com/bobthecow/
mustache.php (visited on 09/18/2014).

[33] HTML 4 - Conformance: requrements and recommendations. url: http://www.
w3.org/TR/html401/conform.html#deprecated (visited on 09/18/2014).

[34] Indigo Toolkit. 2014. url: http://www.ggasoftware.com/opensource/indigo
(visited on 10/21/2014).

[35] jQuery. 2014. url: http://jquery.com/ (visited on 10/21/2014).
[36] KENDA (Kinetic Enzyme Data). 2014. url: http://www.brenda- enzymes.

info/search_result.php?a=55 (visited on 10/15/2014).
[37] Michael Knoll and Jürgen Pleiss. “The Medium-Chain Dehydrogenase/reductase

Engineering Database: a systematic analysis of a diverse protein family to un-
derstand sequence-structure-function relationship.” In: Protein science : a pub-
lication of the Protein Society 17 (2008), pp. 1689–1697. issn: 1469-896X. doi:
10.1110/ps.035428.108.

[38] Michael Knoll et al. “The PHA Depolymerase Engineering Database: A sys-
tematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) de-
polymerases.” In: BMC bioinformatics 10 (2009), p. 89. issn: 1471-2105. doi:
10.1186/1471-2105-10-89.

[39] R Z Kramer et al. “X-ray crystallographic determination of a collagen-like pep-
tide with the repeating sequence (Pro-Pro-Gly).” In: Journal of molecular biology
280.4 (July 1998), pp. 623–38. issn: 0022-2836. doi: 10.1006/jmbi.1998.1881.
url: http://www.ncbi.nlm.nih.gov/pubmed/9677293.

[40] Jan Lehnart. Mustache.js. 2014. url: https://github.com/janl/mustache.js/
(visited on 09/18/2014).

[41] D J Lipman and W R Pearson. “Rapid and sensitive protein similarity searches.”
In: Science (New York, N.Y.) 227 (1985), pp. 1435–1441. issn: 0036-8075. doi:
10.1126/science.2983426.

[42] The Daring Fireball Company LLC. Markdown specification. 2014. url: http:
//daringfireball.net/projects/markdown/ (visited on 09/18/2014).

[43] Huaiyu Mi et al. “The PANTHER database of protein families, subfamilies, func-
tions and pathways”. In: Nucleic Acids Research 33 (2005). issn: 03051048. doi:
10.1093/nar/gki078.

101

http://dx.doi.org/10.1128/AAC.45.3.660-663.2001
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=90352%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=90352%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=90352%5C&tool=pmcentrez%5C&rendertype=abstract
http://books.google.de/books?id=lvTrvhZa1rEC
http://books.google.de/books?id=lvTrvhZa1rEC
http://www.ncbi.nlm.nih.gov/genbank/statistics
http://www.ncbi.nlm.nih.gov/genbank/statistics
https://github.com/bobthecow/mustache.php
https://github.com/bobthecow/mustache.php
http://www.w3.org/TR/html401/conform.html#deprecated
http://www.w3.org/TR/html401/conform.html#deprecated
http://www.ggasoftware.com/opensource/indigo
http://jquery.com/
http://www.brenda-enzymes.info/search_result.php?a=55
http://www.brenda-enzymes.info/search_result.php?a=55
http://dx.doi.org/10.1110/ps.035428.108
http://dx.doi.org/10.1186/1471-2105-10-89
http://dx.doi.org/10.1006/jmbi.1998.1881
http://www.ncbi.nlm.nih.gov/pubmed/9677293
https://github.com/janl/mustache.js/
http://dx.doi.org/10.1126/science.2983426
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://dx.doi.org/10.1093/nar/gki078

References

[44] Jason H. Moore. “Bioinformatics”. In: Journal of Cellular Physiology 213.June
(2007), pp. 365–369. issn: 00219541. doi: 10.1002/jcp.21218.

[45] David W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring
Harbor Laboratory Press, 2004. isbn: 9780879697129. url: http : / / books .
google.de/books?id=bvY21DGa1OwC.

[46] Noel M. O’Boyle et al. “Open Babel: An Open chemical toolbox”. In: Journal of
Cheminformatics 3 (2011). issn: 17582946. doi: 10.1186/1758-2946-3-33.

[47] Hiroyuki Ogata et al. KEGG: Kyoto encyclopedia of genes and genomes. 1999.
doi: 10.1093/nar/27.1.29.

[48] Open Babel: The Open Source Chemistry Toolbox. 2014. url: http://openbabel.
org/wiki/Main_Page (visited on 10/21/2014).

[49] OpenStax CNX - Introduction to NCBI. url: http : / / cnx . org / contents /
388e2c74-93a0-4e1b-8dab-fda7f94ca04c@2/Introduction%5C_to%5C_NCBI
(visited on 10/12/2014).

[50] Our Mission. url: http://www.ncbi.nlm.nih.gov/About/glance/ourmission.
html (visited on 10/12/2014).

[51] Overloading. 2014. url: http : / / php . net / manual / en / language . oop5 .
overloading.php (visited on 10/05/2014).

[52] Packagist - The PHP Package Archivist. 2014. url: http://packagist.org
(visited on 09/15/2014).

[53] J. Pleiss et al. “Lipase engineering database - Understanding and exploiting
sequence-structure-function relationships”. In: Journal of Molecular Catalysis B:
Enzymatic 10.5 (2000-10-02T00:00:00), pp. 491–508. doi: doi:10.1016/S1381-
1177(00)00092- 8. url: http://www.ingentaconnect.com/content/els/
13811177/2000/00000010/00000005/art00092.

[54] Tom Preston-Werner. Semantic Versioning 2.0.0. 2014. url: http://semver.
org/ (visited on 08/15/2014).

[55] Silvia Racolta et al. “The triterpene cyclase protein family: A systematic anal-
ysis”. In: Proteins: Structure, Function and Bioinformatics 80 (2012), pp. 2009–
2019. issn: 08873585. doi: 10.1002/prot.24089.

[56] Trygve Reenskaug and James O. Coplien. The DCI Architecture: A New Vision of
Object-Oriented Programming. 2009. url: http://www.artima.com/articles/
dci_vision.html (visited on 08/16/2014).

[57] RequireJS. 2014. url: http://requirejs.org/ (visited on 10/21/2014).
[58] Margaret Rouse. SearchSQLServer - Database. 2014. url: http://searchsqlserver.

techtarget.com/definition/database (visited on 10/01/2014).
[59] Susanna Sansone et al. “BioSharing Catalogue”. In: University of Oxford (2011).

url: http://otter.oerc.ox.ac.uk/biosharing/?q=standards.
[60] Maurice Scheer et al. “BRENDA, the enzyme information system in 2011”. In:

Nucleic Acids Research 39 (2011). issn: 03051048. doi: 10.1093/nar/gkq1089.

102

http://dx.doi.org/10.1002/jcp.21218
http://books.google.de/books?id=bvY21DGa1OwC
http://books.google.de/books?id=bvY21DGa1OwC
http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1093/nar/27.1.29
http://openbabel.org/wiki/Main_Page
http://openbabel.org/wiki/Main_Page
http://cnx.org/contents/388e2c74-93a0-4e1b-8dab-fda7f94ca04c@2/Introduction%5C_to%5C_NCBI
http://cnx.org/contents/388e2c74-93a0-4e1b-8dab-fda7f94ca04c@2/Introduction%5C_to%5C_NCBI
http://www.ncbi.nlm.nih.gov/About/glance/ourmission.html
http://www.ncbi.nlm.nih.gov/About/glance/ourmission.html
http://php.net/manual/en/language.oop5.overloading.php
http://php.net/manual/en/language.oop5.overloading.php
http://packagist.org
http://dx.doi.org/doi:10.1016/S1381-1177(00)00092-8
http://dx.doi.org/doi:10.1016/S1381-1177(00)00092-8
http://www.ingentaconnect.com/content/els/13811177/2000/00000010/00000005/art00092
http://www.ingentaconnect.com/content/els/13811177/2000/00000010/00000005/art00092
http://semver.org/
http://semver.org/
http://dx.doi.org/10.1002/prot.24089
http://www.artima.com/articles/dci_vision.html
http://www.artima.com/articles/dci_vision.html
http://requirejs.org/
http://searchsqlserver.techtarget.com/definition/database
http://searchsqlserver.techtarget.com/definition/database
http://otter.oerc.ox.ac.uk/biosharing/?q=standards
http://dx.doi.org/10.1093/nar/gkq1089

References

[61] Philipp N. Scheller et al. “Enzyme Toolbox: Novel Enantiocomplementary Imine
Reductases”. In: ChemBioChem 15.15 (Aug. 2014), n/a–n/a. issn: 14394227. doi:
10.1002/cbic.201402213. url: http://www.ncbi.nlm.nih.gov/pubmed/
25163890.

[62] Fabian Sievers and Desmond G. Higgins. “Clustal omega, accurate alignment of
very large numbers of sequences”. In: Methods in Molecular Biology 1079 (2014),
pp. 105–116. issn: 10643745. doi: 10.1007/978-1-62703-646-7-6.

[63] Demet Sirim et al. “The cytochrome P450 engineering database: Integration of
biochemical properties.” In: BMC biochemistry 10 (2009), p. 27. issn: 1471-2091.
doi: 10.1186/1471-2091-10-27.

[64] Demet Sirim et al. “The Laccase Engineering Database: A classification and anal-
ysis system for laccases and related multicopper oxidases”. In: Database 2011
(2011). issn: 17580463. doi: 10.1093/database/bar006.

[65] GGA Software. Ketcher. 2014. url: http://ggasoftware.com/opensource/
ketcher (visited on 09/18/2014).

[66] Quan K Thai and Juergen Pleiss. “SHV Lactamase Engineering Database: a
reconciliation tool for SHV β-lactamases in public databases.” In: BMC genomics
11 (2010), p. 563. issn: 1471-2164. doi: 10.1186/1471-2164-11-563.

[67] Keith F Tipton et al. “Standards for Reporting Enzyme Data: The STRENDA
Consortium: What it aims to do and why it should be helpful”. In: Perspectives
in Science 1 (2014), pp. 131–137. issn: 22130209. doi: 10.1016/j.pisc.2014.
02.012.

[68] Constantin Vogel. “PhD Thesis: Systematic Analysis of the Sequence-Structure-
Function Relationships of Thiamine Diphosphate-dependent Enzymes”. Univer-
sity of Stuttgart, 2014.

[69] Constantin Vogel and Jürgen Pleiss. “The modular structure of ThDP-dependent
enzymes.” In: Proteins 82.10 (Oct. 2014), pp. 2523–37. issn: 1097-0134. doi: 10.
1002/prot.24615. url: http://www.ncbi.nlm.nih.gov/pubmed/24888727.

[70] Constantin Vogel et al. “A standard numbering scheme for thiamine diphosphate-
dependent decarboxylases.” In: BMC biochemistry 13 (2012), p. 24. issn: 1471-2091.
doi: 10.1186/1471-2091-13-24. url: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3534367%5C&tool=pmcentrez%5C&rendertype=
abstract.

[71] Andrew M. Waterhouse et al. “Jalview Version 2-A multiple sequence alignment
editor and analysis workbench”. In: Bioinformatics 25 (2009), pp. 1189–1191.
issn: 13674803. doi: 10.1093/bioinformatics/btp033.

[72] What can PHP do? 2014. url: http://php.net/manual/en/intro-whatcando.
php (visited on 09/18/2014).

[73] What is CSS? url: http://www.w3.org/standards/webdesign/htmlcss#
whatcss (visited on 09/18/2014).

[74] What is PHP? 2014. url: http://php.net/manual/en/intro-whatis.php
(visited on 09/18/2014).

103

http://dx.doi.org/10.1002/cbic.201402213
http://www.ncbi.nlm.nih.gov/pubmed/25163890
http://www.ncbi.nlm.nih.gov/pubmed/25163890
http://dx.doi.org/10.1007/978-1-62703-646-7-6
http://dx.doi.org/10.1186/1471-2091-10-27
http://dx.doi.org/10.1093/database/bar006
http://ggasoftware.com/opensource/ketcher
http://ggasoftware.com/opensource/ketcher
http://dx.doi.org/10.1186/1471-2164-11-563
http://dx.doi.org/10.1016/j.pisc.2014.02.012
http://dx.doi.org/10.1016/j.pisc.2014.02.012
http://dx.doi.org/10.1002/prot.24615
http://dx.doi.org/10.1002/prot.24615
http://www.ncbi.nlm.nih.gov/pubmed/24888727
http://dx.doi.org/10.1186/1471-2091-13-24
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3534367%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3534367%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3534367%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1093/bioinformatics/btp033
http://php.net/manual/en/intro-whatcando.php
http://php.net/manual/en/intro-whatcando.php
http://www.w3.org/standards/webdesign/htmlcss#whatcss
http://www.w3.org/standards/webdesign/htmlcss#whatcss
http://php.net/manual/en/intro-whatis.php

References

[75] Eleanor J Whitfield, Manuela Pruess, and Rolf Apweiler. “Bioinformatics database
infrastructure for biotechnology research.” In: Journal of biotechnology 124.4 (Aug.
2006), pp. 629–39. issn: 0168-1656. doi: 10.1016/j.jbiotec.2006.04.006.
url: http://www.sciencedirect.com/science/article/pii/S016816560600321X.

[76] Michael Widmann, P Benjamin Juhl, and Jürgen Pleiss. “Structural classification
by the Lipase Engineering Database: a case study of Candida antarctica lipase A.”
In: BMC genomics 11 (Jan. 2010), p. 123. issn: 1471-2164. doi: 10.1186/1471-
2164-11-123. url: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2841678%5C&tool=pmcentrez%5C&rendertype=abstract.

[77] Michael Widmann, Jürgen Pleiss, and Peter Oelschlaeger. “Systematic analysis
of metallo-β-lactamases using an automated database”. In: Antimicrobial Agents
and Chemotherapy 56 (2012), pp. 3481–3491. issn: 00664804. doi: 10.1128/AAC.
00255-12.

[78] Michael Widmann, Robert Radloff, and Jürgen Pleiss. “The Thiamine diphos-
phate dependent Enzyme Engineering Database: a tool for the systematic anal-
ysis of sequence and structure relations.” In: BMC biochemistry 11 (2010), p. 9.
issn: 1471-2091. doi: 10.1186/1471-2091-11-9.

104

http://dx.doi.org/10.1016/j.jbiotec.2006.04.006
http://www.sciencedirect.com/science/article/pii/S016816560600321X
http://dx.doi.org/10.1186/1471-2164-11-123
http://dx.doi.org/10.1186/1471-2164-11-123
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2841678%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2841678%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1128/AAC.00255-12
http://dx.doi.org/10.1128/AAC.00255-12
http://dx.doi.org/10.1186/1471-2091-11-9

Declaration of Authorship

I hereby declare that the thesis submitted is my own work. All direct or indirect sources
used are acknowledged as references.

Stuttgart, December 10, 2014

Waldemar Reusch

	List of Figures
	List of Listings
	Motivation
	Introduction
	Bioinformatics
	Sequence alignment
	Data formats

	Databases
	NCBI
	BRENDA
	PDB

	Database systems at the ITB - BioCatNet background
	DWARF
	BioCatNet

	Web-Application development
	Version control cystems
	Code exchange and packages
	Scripting, styling, and markup languages
	Object-oriented programming
	Model-view-controller Architecture
	API

	Aims
	Data acquisition
	Standardization
	Analyses
	Sharing, collaboration, publishing
	Family-specific protein databases

	Methods
	Machine and operating system
	Software
	Database server
	HTTP server
	Bioinformatics tools

	Workflow
	Version control
	Back end
	Front end

	Third party libraries
	Mustache
	Ketcher
	Back end
	Front end

	Results
	BioCatNet data model
	Data model related to the protein sequence
	Data model related to structural information
	Data model related to biochemical function

	BioCatNet back end libraries
	ITB\Router
	ITB\MVC
	ITB\JSON
	ITB\Mime
	ITB\Traits
	ITB\Workers

	BioCatNet front end libraries
	BioCatNet application back end
	Models
	Views
	Controllers
	Worker

	BioCatNet API
	Long running tasks

	BioCatNet website
	Wiki
	Issues and feature requests
	Family-specific protein databases
	Search view
	Sequence browser
	Alignment viewer - Jalview
	Structure browser
	Functions browser
	Taxonomy browser
	Workbench

	Use cases
	Analysis of thiamine diphosphate-dependent enzymes
	Analysis of imine reductases

	Discussion
	Outlook
	Acknowledgements
	References

